west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "hemodynamics" 23 results
  • Measurement Method of Arterial Shear Stress of Rats Model Based on Ultrasonic Particle Imaging Velocimetry

    The development and progression of atherosclerosis and thrombosis are closely related to changes of hemodynamics parameters. Ultrasonic pulse wave Doppler technique is normally used for noninvasively blood flow imaging. However, this technique only provides one-dimensional velocity and depends on the angle between the ultrasound beam and the local velocity vector. In this study, ultrasonic particle image velocimetry method was used to assess whole field hemodynamic changes in normal blood vessels. By using the polynomial fitting method, we investigated the velocity gradient and assessed the shear in different blood flow velocity of 10 healthy rats. It was found that using four polynomial fitting could result in optimal measurement results. The results obtained by ultrasonic particle image velocimetry accorded with the results obtained using Doppler technique. The statistical average of cyclical vessel wall shear stress was positively related to the locational mean velocity. It is proven that ultrasonic particle image velocimetry method could be used to assess directly the real-time whole field hemodynamic changes in blood vessels and was non-invasively, and should be a good prosperous technique for monitoring complex blood flow in stenotic arteries.

    Release date: Export PDF Favorites Scan
  • Analysis and Computational Fluid Dynamics Simulation of Hemodynamic Influences Caused by Splenic Vein Thrombosis

    This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Research Progress on the Development and Regulation of Embryonic Hematopoietic Stem Cells

    Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.

    Release date: Export PDF Favorites Scan
  • Intravascular Ultrasound-based Computational Fluid Dynamics Simulation of Arterial Vessel Wall Strain Distribution

    Quantitative measurement of strain distribution of arterial vessel walls due to pulsatile blood flow within the vascular lumen is valuable for evaluating the elasticity of arterial wall and predicting the evolution of plaques. The present paper shows that the three-dimensional (3D) strain distribution are estimated through uni-directional coupling for 3D vessel and blood models reconstructed from intravascular ultrasound (IVUS) images with the computational fluid dynamics (CFD) numerical simulation technique. The morphology of vessel wall and plaques as well as strain distribution can be visually displayed with pseudo-color coding.

    Release date: Export PDF Favorites Scan
  • Influence of Angle Variation between Right Hepatic Vein and Inferior Vena Cava on Inferior Vena Cava Diaphragm

    Computational fluid dynamics was used to investigate the effect of the pathogenesis of membranous obstruction of inferior vena cava of Budd-Chiari syndrome with various angles between right hepatic vein and inferior vena cava. Mimics software was used to reconstruct the models from magnetic resonance imaging (MRI) angiograms of inferior vena cava, right hepatic vein, middle hepatic vein and left hepatic vein, and 3DMAX was used to construct the models of 30°, 60°, 90° and 120° angles between right hepatic vein and inferior vena cava, which was based on the reconstructed models.The model was conducted with clinical parameters in terms of wall shear stress distribution, static pressure distribution and blood velocity. The results demonstrated that the differences between wall shear stress and static pressure had statistical significance with various angles between right hepatic vein and inferior vena cava by SPSS. The pathogenesis of membranous obstruction of inferior vena cava had a correlation with the angles between right hepatic vein and inferior vena cava.

    Release date: Export PDF Favorites Scan
  • Visualization and Quantitative Analysis of the Blood Flow Fields in Aortic Arch by Vector Flow Mapping in Normal Human Bodies

    To visualize and quantify the hemodynamics in the aortic arch in normal individuals, we used velocity distribution, retrograde flow, vortex formation, and mean energy loss (mEL) at different cardiac cycles in our study. We performed Vector flow mapping (VFM) analysis by using echocardiography in 87 healthy volunteers. The results showed that ① in different sections of the aortic arch, a skewed peak flow velocity (Vp) always appeared in the period of rapid ejection but in different distribution. The systolic flow in the entire aortic arch rose rapidly from near-zero at the point of iso-volumetric contraction to the peak velocity at the period of rapid ejection, and then decreased gradually; ② In the period of iso-volumetric relaxation, retrograde flow and vortex were observed in all subjects in the inner wall of the entire aortic arch; and ③ The change rule of mEL in the entire aortic arch was similar to that of flow velocity. VFM can provide insights into the intra-aortic arch flow patterns, and offer essential fundamentals about flow features associated with common aortic diseases.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Comparison of two methods for hemodynamic assessment in children with tetralogy of Fallot after radical surgery

    Objective To explore the hemodynamic assessment after radical surgery in children with tetralogy of Fallot (TOF) by both echocardiography and Mostcare monitor. Methods Clinical data of 63 children with TOF who underwent radical surgery in our hospital from February 2016 to June 2018 were retrospectively analyzed, including 34 males and 29 females, aged 6-24 (9.82±5.77) months. There were 19 patients undergoing transannular patch reconstruction of the right ventricular outflow tract (a transannular patch group) while 44 patients retained the pulmonary valve annulus (a non-transannular patch group) . The echocardiography and Mostcare monitor parameters were recorded and brain natriuretic peptide was tested at the time points of 0, 8, 12, 24 and 48 hours after operation (T 0, T 1, T 2, T 4) to analyze their correlations and the change trend at different time points after radical surgery. Results The left ventricular ejection fraction at T 1 (43.49%±3.82%) was lower than that at T 0 (48.29%±4.55%), T 2 (45.83%±3.69%), T 3 (53.76%±4.43%) and T 4 (60.54%±3.23%, P<0.05). The cardiac index at T 1 (1.85±0.35 L·min−1·m−2) was lower than that at T 0 (2.11±0.38 L·min−1·m−2), T 2 (2.07±0.36 L·min−1·m−2), T 3 (2.42±0.37 L·min−1·m−2) and T 4 (2.82±0.42 L·min−1·m−2, P<0.05). The cardiac circulation efficiency at T1 (0.19±0.05) was lower than that at T 0 (0.22±0.06), T 2 (0.22±0.05), T 3 (0.28±0.06) and T 4 (0.34±0.06, P<0.05). The right ventricular two-chambers view fraction area change at T 1 (23.17%±3.11%) was lower than that at T 0 (25.81%±3.74%), T 2 (25.38%±3.43%), T 3 (30.60%±4.50%) and T 4 (36.94%±5.85%, P<0.05). The pulse pressure variability was the highest at T 0 (18.76%±3.58%), followed by T 1 (14.81%±3.32%), T 2 (12.44%±2.94%), T 3 (10.39%±2.96%) and T 4 (9.18%±1.92%, P<0.05). The blood brain natriuretic peptide was higher at T 1 (846.67±362.95 pg/ml) than that at T 0 (42.60±18.06 pg/ml), T 2 (730.95±351.09 pg/ml), T 3 (510.98±290.39 pg/ml) and T 4 (364.41±243.56 pg/ml, P<0.05). There was no significant difference in left ventricular ejection fraction, cardiac circulation efficiency and heart index between the two groups (P>0.05). The right ventricular two-chambers view fraction area change of the transannular patch group was significantly lower than that of the non-transannular patch group at each time point (P<0.05). The blood brain natriuretic peptide and pulse pressure variability of the transannular patch group were significantly higher than those of the non-transannular patch group (P<0.05). Left ventricular ejection fraction was positively correlated with cardiac index (r=0.637, P=0.001) and cardiac circulation efficiency (r=0.462, P=0.001) while was significantly negatively correlated with blood brain natriuretic peptide (r=–0.419, P=0.001). Conclusion Both methods can accurately reflect the state of cardiac function. Mostcare monitor has a good consistency with echocardiography. Using transannular patch to recontribute right ventricular outflow tract in operation has more influence on right ventricular systolic function. The Mostcare monitor can guide the hemodynamic management after surgery in real time, continuously and accurately.

    Release date:2019-03-29 01:35 Export PDF Favorites Scan
  • Construction of finite element model of left atrial diverticulum based on computed tomography and reverse engineering softwares

    This paper aims to explore the feasibility of building a finite element model of left atrial diverticulum (LAD) using reverse engineering software based on computed tomography (CT) images. The study was based on a three-dimensional cardiac CT images of a atrial fibrillation patient with LAD. The left atrium and LAD anatomical features were accurately reproduced by using Geomagic Studio 12 and Mimics 15 reverse engineering software. In addition, one left atrial model with LAD and one without LAD were created with ANSYS finite element analysis software, and the validity of the two models were verified. The results show that it is feasible to establish the LAD finite element model based on cardiac three-dimensional CT images using reverse engineering software. The results of this paper will lay a theoretical foundation for further hemodynamic analysis of LAD.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Effect of arterial flow on muscle atrophy

    This study analyzed the inherent relation between arterial blood mass flow and muscle atrophy of residual limb to provide some necessary information and theoretical support for the clinical rehabilitation of lower limb amputees. Three-dimensional arterial model reconstruction was performed on both intact side and residual limb of a unilateral transfemoral amputee who is the subject. Then hemodynamic calculation was carried out to comparatively analyze the mass flow state at each arterial outlet of both lower extremities. The muscle atrophy ratio of residual limb was calculated by measuring the cross-sectional area of bilateral muscles. Based on the blood supply relationship, the correlation between arterial blood flow reduction ratio and muscle atrophy ratio was discussed. The results showed that the mass flow of superficial femoral arteries and lateral circumflex femoral arteries severely reduced. Meanwhile rectus femoris, vastus lateralis and vastus medialis which were fed by these arteries showed great atrophy too. On the contrary, the mass flow of deep femoral arteries and medial femoral circumflex arteries slightly reduced. Meanwhile gracilis, adductor longus, long head of biceps which were fed by these arteries showed mild atrophy too. These results indicated that there might be a positive and promotion correlation between the muscle atrophy ratio and the blood mass flow reduction ratio of residual limb during rehabilitation.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Hemodynamic analysis of a new retrievable vena cava filter

    Vena cava filter is a filter device designed to prevent pulmonary embolism caused by thrombus detached from lower limbs and pelvis. A new retrievable vena cava filter was designed in this study. To evaluate hemodynamic performance and thrombus capture efficiency after transplanting vena cava filter, numerical simulation of computational fluid dynamics was used to simulate hemodynamics and compare it with the commercialized Denali and Aegisy filters, and in vitro experimental test was performed to compare the thrombus capture effect. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, wall shear stress on the wall of the filter, the area ratio of the high and low wall shear stress area and thrombus capture efficiency when the thrombus diameter was 5 mm, 10 mm, 15 mm and thrombus content was 10%, 20%, 30%, respectively. Meanwhile, the thrombus capture effects of the above three filters were also compared and evaluated by in vitro experimental data. The results showed that the Denali filter has minimal interference to blood flow after implantation, but has the worst capture effect on 5 mm small diameter thrombus; the Aegisy filter has the best effect on the trapping of thrombus with different diameters and concentrations, but the low wall shear stress area ratio is the largest; the new filter designed in this study has a good filtering and capture efficiency on small-diameter thrombus, and the area ratio of low wall shear stress which is prone to thrombosis is small. The low wall shear stress area of the Denali and Aegisy filters is relatively large, and the risk of thrombosis is high. Based on the above results, it is expected that the new vena cava filter designed in this paper can provide a reference for the design and clinical selection of new filters.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content