This study is aimed to investigate the effects of mechanical stretch on the expression of transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-2 (FGF-2), and the signaling pathway in human bronchial epithelioid (16HBE) cells under mechanical stretch. Using loading device with flexible substrate (FX-4000T) to stretch 16HBE cells, we found that the stretching elongation was 15%, at frequency of 1 Hz, stretching for 0.5 h, 1 h, 1.5 h and 2 h. Choosing the higher expression of TGF-β1, FGF-2 and Ca2+ group to carry out intervention experiments, we used the cells pretreated with canonical transient receptor potential 1 (TRPC1) channel antagonist SKF96365, protein kinase C (PKC) inhibitor HA-100, and thereafter mechanical stretch to interpose. Compared with those in the blank control group, TGF-β1 and FGF-2' protein and mRNA, intracellular Ca2+ fluorescence intensity were higher, and the differences were statistically significant (P < 0.05) at the 4 time points, 0.5 h, 1 h, 1.5 h and 2 h. At 0.5 h, the increasing rate was the highest. TGF-β1 protein and mRNA, FGF-2 protein and mRNA, intracellular Ca2+ luorescence intensity in the stretch+SKF96365 and stretch+HA-100 intervented group were decreased, the differences were statistically significant than those in 0.5 h stretch group (P < 0.05) without intervention. The expression of TGF-β1, FGF-2 was up-regulated in 16HBE cells under mechanical stretch, PKC, TRPC1, and Ca2+ may participate in the signal path.