west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "hydrogel" 38 results
  • Application of Endoscopic Surgery Combined with Intraoperative Color Doppler Ultrasound in Removal of Injected Breast Augmentation Agents (Report of 16 Cases)

    Objective To evaluate the effect of endoscopic surgery combined with intraoperative color Doppler ultrasound on removing the injected breast augmentation agents and share our experiences. Methods Sixteen female who accepted the bilateral removal of injected breast augmentation agents through endoscopic surgery combined with intraoperative color Doppler ultrasound between 2008 and 2010 were enrolled in this study. The results, techniques, and advantages of management were analyzed retrospectively. Results One incision was made in 18 breasts, 2 in 4 breasts, 3 in 10 breasts. The length of incision was 0.5 to 1 cm. The mean operative time was 128.70 min per person. The average amount of bleeding was 52.67 ml per person. Complications such as postoperative bleeding, infection, poor drainage, or breast augmentation agents remain did not happened in all cases. No case was turned into normal operation. Female who accepted this operation were all satisfied with the appearance of incisions. During 1-3 months follow up, neither clinically palpable mass nor sensory disturbance in nipple or areola of breast was observed. Color Doppler ultrasound or magnetic resonance showed 16 cases had been cleared free of breast augmentation agents. Conclusion With the advantages of beauty, safe, minimal invasion, and partial resection of lesions at the same time, endoscopic surgery combined with intraoperative color Doppler ultrasound was an effective approach in the removal of injected breast augmentation agents.

    Release date:2016-09-08 10:49 Export PDF Favorites Scan
  • IN VITRO STUDY ON INJECTABLE ALGINATE-STRONTIUM HYDROGEL FOR BONE TISSUE ENGINEERING

    Objective To investigate the application potential of alginate-strontium (Sr) hydrogel as an injectable scaffold material in bone tissue engineering. Methods The alginate-Sr/-calcium (Ca) hydrogel beads were fabricated by adding 2.0wt% alginate sodium to 0.2 mol/L SrCl2/CaCl2 solution dropwise. Microstructure, modulus of compression, swelling rate, and degradability of alginate-Sr/-Ca hydrogels were tested. Bone marrow mesenchymal stem cells (BMSCs) were isolated from femoral bones of rabbits by flushing of marrow cavity. BMSCs at passage 5 were seeded onto the alginate-Sr hydrogel (experimental group) and alginate-Ca hydrogel (control group), and the viability and proliferation of BMSCs in 2 alginate hydrogels were assessed. The osteogenic differentiation of cells embeded in 2 alginate hydrogels was evaluated by alkaline phosphate (ALP) activity, osteoblast specific gene [Osterix (OSX), collagen type I, and Runx2] expression level and calcium deposition by fluorescent quantitative RT-PCR and alizarin red staining, Von Kossa staining. The BMSCs which were embeded in alginate-Ca hydrogel and cultured with common growth medium were harvested as blank control group. Results The micromorphology of alginate-Sr hydrogel was similar to that of the alginate-Ca hydrogel, with homogeneous pore structure; the modulus of compression of alginate-Sr hydrogel and alginate-Ca hydrogel was (186.53 ± 8.37) and (152.14 ± 7.45) kPa respectively, showing significant difference (t=6.853, P=0.002); there was no significant difference (t=0.737, P=0.502) in swelling rate between alginate-Sr hydrogel (14.32% ± 1.53%) and alginate-Ca hydrogel (15.25% ± 1.64%). The degradabilities of 2 alginate hydrogels were good; the degradation rate of alginate-Sr hydrogel was significantly lower than that of alginate-Ca hydrogel on the 20th, 25th, and 30th days (P lt; 0.05). At 1-4 days, the morphology of cells on 2 alginate hydrogels was spherical and then the shape was spindle or stellate. When three-dimensional cultured for 21 days, the DNA content of BMSCs in experimental group [(4.38 ± 0.24) g] was significantly higher than that in control group [(3.25 ± 0.21) g ] (t=8.108, P=0.001). On the 12th day after osteogenic differentiation, the ALP activity in experimental group was (15.28 ± 1.26) U/L, which was significantly higher than that in control group [(12.07 ± 1.12) U/L] (P lt; 0.05). Likewise, the mRNA expressions of OSX, collagen type I, and Runx2 in experimental group were significantly higher than those in control group (P lt; 0.05). On the 21th day after osteogenic differentiation, alizarin red staining and Von Kossa staining showed calcium deposition in 2 groups; the calcium nodules and phosphate deposition in experimental group were significantly higher than those in control group (P lt; 0.05). Conclusion Alginate-Sr hydrogel has good physicochemical properties and can promote the proliferation and osteogenic differentiation of BMSCs, so it is an excellent injectable scaffold material for bone tissue engineering.

    Release date:2016-08-31 10:53 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON COLLAGEN HYDROGEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

    Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • COMPARISON STUDY ON INJECTABLE TISSUE ENGINEERED NUCLEUS PULPOSUS CONSTRUCTED BY DIFFERENT CELLS AND CHITOSAN HYDROGEL

    Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs. 

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • CONSTRUCTION OF INJECTABLE TISSUE ENGINEERED NUCLEUS PULPOSUS IN VITRO

    Objective To investigate the feasibil ity of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Methods Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold wasmade of chitosan, disodium β-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viabil ity of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at 37 (15 minutes) due to crossl inking reaction. Acridine orange-propidiumiodide staining showed that the viabil ity rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 ± 0.064 and 0.832 ± 0.052, respectively,showing more strengths of producing matrix than that of monolayer culture (0.528 ± 0.039, 0.773 ± 0.046) with a significant difference (P lt; 0.05). Conclusion With good cellular compatibilities, the thermo-sensitive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion after compound culture, and may be a potential NP cells carrier for tissue engineered NP.  

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • BMSCs -CHITOSAN HYDROGEL COMPLEX TRANSPLANTATION FOR TREATING INTERVERTEBRAL DISC DEGENERATION

    Objective To investigate the therapeutic effect of BMSCs- chitosan hydrogel complex transplantation on intervertebral disc degeneration and to provide experimental basis for its cl inical appl ication. Methods Two mill il iter of bone marrow from 6 healthy one-month-old New Zealand rabbits were selected to isolate and culture BMSCs. Then, BMSCs at passage 3 were labeled by 5-BrdU and mixed with chitosan hydrogel to prepare BMSCs- chitosan hydrogel complex. Six rabbitswere selected to establ ish the model of intervertebral disc degeneration and randomized into 3 groups (n=2 per group): control group in which intervertebral disc was separated and exposed but without further processing; transplantation group in which 30 μL of autogenous BMSCs- chitosan hydrogel complex was injected into the center of defected intervertebral disc; degeneration group in which only 30 μL of 0.01 mol/L PBS solution was injected. Animals were killed 4 weeks later and the repaired discs were obtained. Then cell 5-BrdU label ing detection, HE staining, aggrecan safranin O staining, Col II immunohistochemical staining and gray value detection were conducted. Results Cell label ing detection showed that autogenous BMSCs survived and prol iferated after transplantation, forming cell clone. HE staining showed that in the control and transplantation groups, the intervertebral disc had a clear structure, a distinct boundary between the central nucleus pulposus and the outer anulus fibrosus, and the obviously stained cell nuclear and cytochylema; while the intervertebral disc in the degeneration group had a deranged structure and an indistinct division between the nucleus pulposus and the outer anulus fibrosus. Aggrecan safarine O stainning notified that intervertebral disc in the control and transplantation groups were stained obviously, with a clear structure; while the intervertebral disc in the degeneration group demonstrated a deranged structure with an indistinct division between the nucleus pulposus and the anulus fibrosus. Col II immunohistochemical staining showed that the tawny-stained region in the control group was located primarily in the central nucleus pulposus with a clear structure of intervertebral disc, the central nucleus pulposus in the transplantation group was positive with obvious tawny-stained intercellular substances and a complete gross structure, while the stained color in the degeneration group was l ighter than that of other two groups, with a indistinct structure.Gray value assay of Col II immunohistochemical staining section showed that the gray value of the control, the ransplantation and the degeneration group was 223.84 ± 3.93, 221.03 ± 3.53 and 172.50 ± 3.13, respectively, indicating there was no significant difference between the control and the transplantation group (P gt; 0.05), but a significant difference between the control and transplantation groups and the degeneration group (P lt; 0.05). Conclusion The rabbit BMSCs-chitosan hydrogel complex can repair intervertebral disc degeneration, providing an experimental foundation for the cl inical appl ication of injectable tissue engineered nucleus pulposus complex to treat intervertebral disc degeneration.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF REPAIRING FULL-THICKNESS ARTICULAR CARTILAGE DEFECT WITH CHONDROCYTE-SODIUM ALGINATE HYDROGEL-SIS COMPLEX

    Objective To explore the effect of tissue engineered cartilage reconstructed by using sodium alginate hydrogel and SIS complex as scaffold material and chondrocyte as seed cell on the repair of full-thickness articular cartilage defects. Methods SIS was prepared by custom-made machine and detergent-enzyme treatment. Full-thickness articularcartilage of loading surface of the humeral head and the femoral condyle obtained from 8 New Zealand white rabbits (2-3weeks old) was used to culture chondrocytes in vitro. Rabbit chondrocytes at passage 4 cultured by conventional multipl ication method were diluted by sodium alginate to (5-7) × 107 cells/mL, and then were coated on SIS to prepare chondrocyte-sodium alginate hydrogel-SIS complex. Forty 6-month-old clean grade New Zealand white rabbits weighing 3.0-3.5 kg were randomized into two groups according to different operative methods (n=20 rabbits per group), and full-thickness cartilage defect model of the unilateral knee joint (right or left) was establ ished in every rabbit. In experimental group, the complex was implanted into the defect layer by layer to construct tissue engineered cartilage, and SIS membrane was coated on the surface to fill the defect completely. While in control group, the cartilage defect was filled by sodium alginate hydrogel and was sutured after being coated with SIS membrane without seeding of chondrocyte. General condition of the rabbits after operation was observed. The rabbits in two groups were killed 1, 3, 5, 7, and 9 months after operation, and underwent gross and histology observation. Results Eight rabbits were excluded due to anesthesia death, wound infection and diarrhea death. Sixteen rabbits per group were included in the experiment, and 3, 3, 3, 3, and 4 rabbits from each group were randomly selected and killed 1, 3, 5, 7, and 9 months after operation, respectively. Gross observation and histology Masson trichrome staining: in the experimental group, SIS on the surface of the implant was fused with the host tissue, and the inferface between them disappeared 1 month after operation; part of the implant was chondrified and the interface between the implant and the host tissue was fused 3 months after operation; the implant turned into fibrocartilage 5 months after operation; fiber arrangement of the cartilage in theimplant was close to that of the host tissue 7 months after operation; cartilage fiber in the implant arranged disorderly andactive cell metabol ism and prol iferation were evident 9 months after operation. While in the control group, no repair of thedefect was observed 9 months after operation. No obvious repair was evident in the defects of the control group within 9months after operation. Histomorphometric evaluation demonstrated that the staining intensity per unit area of the reparative tissue in the defect of the experimental group was significant higher than that of the control group at each time point (P lt; 0.05), the chondrification in the experimental group was increased gradually within 3, 5, and 7 months after operation (P lt; 0.05), and it was decreased 9 months after operation comparing with the value at 7 months after operation (P lt; 0.05). Conclusion Constructed by chondrocyte-sodium alginate hydrogel-SIS in complex with surficial suturing of SIS membrane, the tissue engineered cartilage can in-situ repair cartilage defect, promote the regeneration of cartilage tissue, and is in l ine with physiological repair process of articular cartilage.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EFFECT OF DEACETYLATION DEGREE OF CHITOSAN ON THERMOSENSITIVE HYDROGEL VIA RHEOLOGICAL CHARACTERIZATION/

    To evaluate the effect of deacetylation degree (DDA) on the gelation behavior of thermosensitive chitosan-β glycerol phosphate disodium salt pentahydrate (CH-GP) system and to compare their rheological behaviors before and after gelation. Methods A series of thermosensitive CH-GP samples with different DDAs (70%, 85%, 90%, 97%)were prepared by dissolving CH with 0.1 mol/L HCl solution, 5 samples for every single DDA, and then all these CH-GP solution samples processed the frequency sweep test and temperature sweep test (10-70℃ , 1℃ /min) on AR 2000ex rheometer, with pH value of 7.02. Also, all the results of hydrogel samples were processed a frequency sweep test. Results With CH concentration of 2% (w/v) and pH value of 7.02 , the gelating temperature of CH-GP systems with different DDAs (85%, 90%, 97%) were (59.90 ± 0.08), (48.10 ± 0.08), (37.10 ± 0.11) ℃ , respectively. While the gelating temperature of CH-GP system with 70% DDA was over 70℃ . There were statistically significant differences in temperature and time of gelation among groups with different DDAs (P lt; 0.05). Furthermore, storage modulus of such system raised from dozens Pa to a magnitude of several kPa during gelation , while loss modulus kept almost steady. Conclusion Gelating temperature and mechanical property of the system could be measured objectively by rheological characterization. Thus during designing tissue engineered scaffolds for various purposes, it is helpful applying selected CH with optimal DDA to different target tissues.

    Release date:2016-09-01 09:14 Export PDF Favorites Scan
  • STUDY ON TREATING RESIDUAL CAVITY OF BODY SURFACE AFTER ABSCESS DRAINAGE BY SODIUMHYALURONATE HYDROGEL

    Objective To study the effect of sodium hyaluronate hydrogel in treating residual cavity on body surface after abscess drainage so as to provide new method to speed up the heal ing of residual cavity after body surface abscess drainageand reduce the frequency of dressing change and cl inic nursing workload. Methods From June 2007 to March 2008, 60 outpatients with body surface abscess drainage were randomly divided into hydrogel group (group A, 30 cases) and the control group (group B, 30 cases). In group A, there were 16 males and 14 females aged (49.5 ± 6.1) years, the disease course was (3.8 ± 0.6) days, and the volume of residual cavity was (4.19 ± 1.31) mL. In group B, there were 18 males and 12 females aged (50.2 ± 7.6) years, the disease course was (4.3 ± 0.5) days, and the volume of residual cavity was (4.04 ± 1.22) mL. There was no significant difference between two groups in gender, age, disease course and volume of residual cavity (P gt; 0.05). Residual cavity was smeared with 1 mL/cm2 sodium hyaluronate hydrogel in group A and drained by sal ine gauze in group B, the dressing was changed every two to three days. Residual cavity volume was recorded every four days, and the residual cavity volume, the frequency of out-patient dressing and the heal ing time residual of cavity were compared. Results The volume of residual cavity was (3.11 ± 1.12), (1.75 ± 0.95) and (0.55 ± 0.56) mL in group A, and was (3.39 ± 1.12), (2.64 ± 0.99) and (1.81 ± 0.81) mL in group B at 4, 8 and 12 days after treatment respectively, showing no significant differences at 4 days (P gt; 0. 05), but significant difference at 8 and 12 days (P lt; 0.01). Residual cavity heal ing time was (12.70 ± 2.78) days in group A and (20.27 ± 3.89) days in group B, and the frequency of dressing change was 5.53 ± 1.33 in group A and 9.13 ± 1.81 in group B, indicating significant differences between two groups (P lt; 0.01). Conclusion Sodium hyaluronate hydrogel can promote residual cavity heal ing, reduce the frequency of dressing change of out-patient and decrease the cl inic nursing care workload.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • Ectopic Osteogenesis In Vivo Using Bone Morphogenetic Protein-2 Derived Peptide Loaded Biodegradable Hydrogel

    We investigated the development of an injectable, biodegradable hydrogel composite of poly(trimethylene carbonate)-F127-poly(trimethylene carbonate)(PTMC11-F127-PTMC11)loaded with bone morphogenetic protein-2 (BMP-2) derived peptide P24 for ectopic bone formation in vivo and evaluated its release kinetics in vitro. Then we evaluated P24 peptide release kinetics from different concentration of PTMC11-F127-PTMC11 hydrogel in vitro using bicinchoninic acid (BCA)assay. P24/PTMC11-F127-PTMC11 hydrogel was implanted into each rat's erector muscle of spine and ectopic bone formation of the implanted gel in vivo was detected by hematoxylin and eosin stain (HE). PTMC11-F127-PTMC11 hydrogel with concentration more than 20 percent showed sustained slow release for one month after the initial burst release. Bone trabeculae surround the P24/PTMC11-F127-PTMC11 hydrogel was shown at the end of six weeks by hematoxylin and eosin stain. These results indicated that encapsulated bone morphogenetic protein (BMP-2) derived peptide P24 remained viable in vivo, thus suggesting the potential of PTMC11-F127-PTMC11 composite hydrogels as part of a novel strategy for localized delivery of bioactive molecules.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content