west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "immunomodulation" 4 results
  • IMMUNOMODULATORY EFFECT OF TOTAL GLUCOSIDES OF PAEONY ON THE PATIENTS WITH ENDOGENOUS UVEITIS

    Using the techniques of monoclonal antibody and radioactive isotope,we found that the total glueosides of paeony (TGP) could almost regain peripheral blood T cell subsets increased or decreased ,supressed cellular immune function and disordered humor immune function of the patients with endogenous uveitis(ElJ) to normal level ,but could not regain those evidently of the patients in control group. The result suggested that TGP might possess double immunomodulatory effect on the patients with EU. (Chin J Ocul Fundus Dis,1994,10:146-148)

    Release date:2016-09-02 06:34 Export PDF Favorites Scan
  • Osteoimmunomodulatory effects of inorganic biomaterials in the process of bone repair

    Objective To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. Methods A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. Results Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. Conclusion Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.

    Release date: Export PDF Favorites Scan
  • Research progress on the role and mechanism of hepatic macrophages in liver injury during acute pancreatitis

    Acute pancreatitis (AP) is a gastroenterological emergency with an acute onset and a high mortality rate. The main pathogenesis of AP is pancreatic damage and excessive activation of inflammatory cells induced by multiple factors. Due to anatomical features, the liver is the first extrapancreatic organ to be attacked by high concentrations of trypsin and inflammatory mediators during AP. Hepatic macrophages have been shown to be a major source of AP-related inflammatory factors. Interventions targeting hepatic macrophages may be critical to block liver injury/failure during AP, promote tissue repair, and reduce systemic symptoms. This review summarizes the pathological role of hepatic macrophages in AP and targeted interventions to provide new ideas and approaches to resolve the pathogenesis of AP and alleviate concurrent liver injury.

    Release date: Export PDF Favorites Scan
  • Bone/cartilage immunomodulating hydrogels: construction strategies and applications

    Objective To review the research progress in the construction strategy and application of bone/cartilage immunomodulating hydrogels. Methods The literature related to bone/cartilage immunomodulating hydrogels at home and abroad in recent years was reviewed and summarized from the immune response mechanism of different immune cells, the construction strategy of immunomodulating hydrogels, and their practical applications. Results According to the immune response mechanism of different immune cells, the biological materials with immunoregulatory effect is designed, which can regulate the immune response of the body and thus promote the regeneration of bone/cartilage tissue. Immunomodulating hydrogels have good biocompatibility, adjustability, and multifunctionality. By regulating the physical and chemical properties of hydrogel and loading factors or cells, the immune system of the body can be purposively regulated, thus forming an immune microenvironment conducive to osteochondral regeneration. ConclusionImmunomodulating hydrogels can promote osteochondral repair by affecting the immunomodulation process of host organs or cells. It has shown a wide application prospect in the repair of osteochondral defects. However, more data support from basic and clinical experiments is needed for this material to further advance its clinical translation process.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content