west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "intensity-modulated radiation therapy" 2 results
  • A Treatment Plan Dose Interpolation Algorithm Based on Gradient Feature in Intensity-modulated Radiation Therapy

    The dose data produced by treatment plan system (TPS) in intensity-modulated radiation therapy (IMRT) has many gradient edge points. Considering this feature we proposed a new interpolation algorithm called treatment plan dose interpolation algorithm based on gradient feature in intensity-modulated radiation therapy (TDAGI), which improves the Canny algorithm to detect the gradient edge points and non-edge points by using the gradient information in the dose data plane. For each gradient edge point, the corresponding gradient profile was traced and the profile's sharpness was calculated, and for each non-edge point, the dispersion was calculated. With the sharpness or dispersion, the kernel coefficients of bi-cubic interpolation can be obtained and can be used as the central point to complete the bi-cubic interpolation calculation. Compared with bi-cubic interpolation and bilinear interpolation, the TDAGI algorithm is more accurate. Furthermore, the TDAGI algorithm has the advantage of gradient keeping. Therefore, TDAGI can be used as an alternative method in the dose interpolation of TPS in IMRT.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Optimization of beam sets and segments number in static intensity-modulated radiation therapy plans in radiotherapy of gastric cancer

    ObjectiveTo compare the static intensity-modulated radiation therapy (IMRT) plans using different beams sets and segments number, and find the better static IMRT plan sets on beams and segments in gastric surgical adjuvant radiotherapy.MethodsFifteen patients who underwent adjuvant radiotherapy for gastric cancer between February 1st and August 30th, 2013 were chosen as subjects through random sampling. Based on the 5 beams static IMRT plans already used in clinical practice, four different static IMRT plans used diverse beams sets for each patient were designed in the same treatment planning system (Pinnacle 9.2). The beams sets of static IMRT plans were as follows: 7 coplanar equal beams; 5 coplanar equal beams; 4 coplanar beams of 310, 20, 90 and 180°; 3 coplanar beams of 310, 65 and 180°. Sufficient segments 65 was set as the max segments number in order to compare the plans’ difference just resulting from beams. In the second step, the max segments number was changed from 65 to 45 and 25 to design two different static IMRT plans for the 4 coplanar beams static IMRT plans. The dosimetric parameters were compared for the planning target volume (PTV) and organs at risk (OARs). The monitor units and treatment times of the different static IMRT plans were also evaluated.ResultsWhen the max segments number was set to 65, the 4 coplanar beams static IMRT plans were a little better on PTV conformability than the 5 coplanar beams static IMRT plans used in clinical practice (0.74±0.04 vs. 0.73±0.05, P<0.01). Meanwhile, better OARs dose sparing especially for liver and kidneys were gained by the 4 coplanar beams static IMRT plans, for example, the percent volume gained 30 Gy for liver [(22.71±6.10)%vs. (24.03±6.84)%, P<0.01] and the percent volume gained 20 Gy for the right kidney [(14.97±6.72)%vs. (19.41±6.14)%, P<0.01]. The PTV conformability of the 4 coplanar beams static IMRT plans reduced as the max segments number became smaller (0.74±0.04vs. 0.73±0.04 vs. 0.71±0.04, P<0.05). However, they were still acceptable in clinical practice. And the better dose sparing for liver and kidneys were retained. The average reductions of 1.8 and 4.3 minutes on the irradiation time were get by the 4 coplanar beams static IMRT plans with the max segments number 45 and 25 compared to that with the max segments number 65 [(494.66±26.79)vs. (384.26±14.99) vs. (235.00±9.21) s, P<0.01]. And the raises of treatment efficiency were 22.3% and 52.4%, respectively (P<0.05).ConclusionsThe 4 coplanar beams static IMRT plans with fewer segments could ensure plan quality, and protect the OARs better in the meanwhile, especially for liver and kidneys. The treatment time is reduced as well. The 4 coplanar beams static IMRT plans could improve the treatment efficiency.

    Release date:2018-04-23 05:00 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content