west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "interleukin 1β" 3 results
  • Effect of Melittin on collagen type II expression of rat endplate chondrocytes induced by interleukin 1β

    Objective To observe the effect of Melittin on collagen type II (Col-II) expression of rat endplate chondrocytes (EPCs) induced by interleukin 1β (IL-1β). Methods Primary EPCs from the lumbar vertebra of 4-week-old Sprague Dawley rats were culturedin vitro and identified by morphological observation, toluidine blue staining and Col-II immunofluorescence staining. Then, MTT assay was used to determine the optimal concentration of IL-1 and Melittin. Next, EPCs at passage 3 were randomly divided into 4 groups: no treatment was done in group A as control group; the optimal concentration of IL-1β, Melittin, and both IL-1β and Melittin were used in groups B, C, and D respectively. The expression of Col-II was detected by Western blot after 48 hours intervention. Results Under inverted microscope, the first generation EPCs were polygonal; cell proliferation decreased after fifth generation, and cell morphology changed into fusiform. The acidic mucosubstance in the cytoplasm (such as Aggrecan) was stained dark blue by toluidine blue. After marking Col-II by immunofluorescence, the positive expression of cytoskeleton (green fluorescence) could be observed. MTT assay showed that IL-1β and Melittin could inhibit the EPCs in a dose-dependent manner after intervention of 24 and 48 hours, and the optimal concentrations of IL-1β and Melittin intervention were 10 ng/mL and 1.0 μg/mL respectively. Compared with group A, the expression of Col-II was significantly reduced in group B, and was significantly increased in group C by Western blot assay, but there was no significant difference between group D and group A. The Col-II expression levels of groups A, B, C, and D were 0.991±0.024, 0.474±0.127, 1.913±0.350, and 1.159±0.297 respectively, showing significant difference between the other groups (P<0.05) except between group A and group D (P>0.05). Conclusion Melittin has a protective effect on endplate cartilage, and the research results provide experimental basis for the prevention and treatment of spinal degenerative disease.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Effect of chondrogenesis related miR-4287 on expression of aggrecanase-1 in human chondrocytes

    Objective To investigate the effect and mechanism of miR-4287, a chondrogenesis associated microRNA, regulated the expression of aggrecanase-1 (a disintegrin and metalloproteinase with thrombospondin motif 4, ADAMTS4) in human chondrocytes. Methods First, the voluntarily donated normal and osteoarthritic knee articular cartilages were used to detect the expressions of miR-4287 and ADAMTS4 mRNA by real-time fluorescence quantitative PCR. Then, chondrocytes were isolated from knee articular cartilages. The effect of IL-1β on the expression of miR-4287 and ADAMTS4 mRNA was validated by the first generation of osteoarthritic chondrocytes. To confirm the influence of IL-1β signal pathways on the expression of miR-4287 and ADAMTS4 mRNA, osteoarthritic chondrocytes were pretreated with MAPK signal pathway inhibitor SP600125, NF-κB pathway inhibitor SN50, and finally stimulated with IL-1β. Chondro cytes were transfected with miR-4287 mimics and mimics negative control, inhibitors and inhibitors negative control respectively to value the effect of miR-4287 on ADAMTS4 expression. Luciferase reporter assay was used to verify the direct interaction between miR-4287 and putative site in the 3-untranslated region (3’UTR) of ADAMTS4 mRNA. Results Compared with normal knee articular cartilages, the miR-4287 expression was markedly diminished and conversely ADAMTS4 mRNA expression was raised in osteoarthritis cartilages (P<0.05). Stimulation with IL-1β led to a reduction in miR-4287 expression and upregulation in ADAMTS4 mRNA expression, showing significant difference when compared with the untreated groups (P<0.05). Pretreatment with IL-1β signal pathway inhibitors induced miR-4287 expression and attenuated ADAMTS4 mRNA expression in human chondrocytes, which were significantly different from that of unstimulated cells (P<0.05). ADAMTS4 mRNA and protein were suppressed by transfection with miR-4287 mimics (P<0.05) and elevated by transfection with miR-4287 inhibitors (P<0.05). As luciferase reporter assay showed, overexpression miR-4287 failed to alter the luciferase activity of a reporter construct containing either wild or mutant 3’UTR of ADAMTS4 mRNA (P>0.05). Conclusion miR-4287, a chondrogenesis associated microRNA, may play an important role in cartilage degeneration. miRNA-4287 is able to regulate ADAMTS4 expression in human chondrocytes, but not by means of directly targeted the ADAMTS4 mRNA 3’UTR. The exact mechanisms need to be further addressed.

    Release date:2017-12-11 12:15 Export PDF Favorites Scan
  • Effects of interleukin 10 gene modified bone marrow mesenchymal stem cells on expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury

    ObjectiveTo explore the effects of interleukin 10 (IL-10) gene modified bone marrow mesenchymal stem cells (BMSCs) on the expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury.MethodsBMSCs were cultured by whole bone marrow adherence screening method. The properties of BMSCs were identified by immunocytochemical methods. BMSCs at passage 3 were transfected with recombinant adenovirus IL-10 gene (AdIL-10-BMSCs). The model of middle cerebral artery occlusion was made in 40 adult male Sprague Dawley rats by thread embolism method. The rats were randomly divided into 4 groups (n=10). At 3 hours after modelling, the rats of groups A, B, C, and D received tail intravenous injection of 1 mL L-DMEM medium containing 10% FBS, 61.78 ng IL-10, 1 mL BMSCs suspension (2×106 cells/mL), and 1 mL AdIL-10-BMSCs cell suspension (2×106 cells/mL), respectively. The cells were labelled with BrdU before cell transplantation in groups C and D. At 7 days after reperfusion, the brain tissue was harvested to detect the expression of OX42 by immunohistochemical assay, to determine the concentration of tumor necrosis factor α (TNF-α) and IL-1β by ELISA, and to detect the apoptosis by TUNEL assay. BrdU labelled cells were observed by immunofluorescence staining in groups C and D.ResultsBrdU labelled positive cells with green fluorescence were observed in the brain tissue of groups C and D, which mainly distributed in the striatum, cerebral cortex, and subcortex around the infarction area. The number of OX42 positive cells was significantly less in groups B, C, and D than group A (P<0.05), and in group D than groups B and C (P<0.05). Compared with the other 3 groups, the contents of TNF-α and IL-1β significantly decreased in group D (P<0.05). TUNEL assay showed that the apoptotic cells (TUNEL positive cells) were mainly seen in the striatum and fronto parietal subcortical tissues (equivalent to ischemic penumbra). The number of TUNEL positive cells in group D was significantly less than that in groups A, B, and C (P<0.05).ConclusionAdIL-10-BMSCs can inhibit secretion of TNF-α and IL-1β from microglial cells and inhibit the nerve cell apoptosis around infarct brain tissue, which might contribute to its protective role upon cerebral ischemia reperfusion injury.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content