west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "inverse problem" 6 results
  • Research Progress of Quantitative Susceptibility Mapping in MRI

    Magnetic susceptibility is an intrinsic physical quantity which describes the relationship between material magnetization and applied external magnetic field. Quantitative susceptibility mapping (QSM) is an MRI technology which can quantify the buck magnetic susceptibility of tissue in vivo. It is particularly effective at elucidating anatomy with paramagnetic or diamagnetic components. QSM technology is a method for solving the ill-pose problem of un-conventional de-convolution of the measured tissue magnetic field with the unit magnetic dipole field to obtain the susceptibility source map. Many multi orientation scan based QSM and clinically acceptable single orientation QSM methods have been proposed to solve this ill-posed problem. In this paper, the QSM concept is introduced and the various QSM methods are systematically categorized and discussed. The aim of this paper is to summarize the current research progress of QSM, popularize the knowledge of QSM and promote the improvements and the rational application of QSM in clinical field.

    Release date: Export PDF Favorites Scan
  • Research on Reconstruction of Ultrasound Diffraction Tomography Based on Compressed Sensing

    Ultrasound diffraction tomography (UDT) possesses the characteristics of high resolution, sensitive to dense tissue, and has high application value in clinics. To suppress the artifact and improve the quality of reconstructed image, classical interpolation method needs to be improved by increasing the number of projections and channels, which will increase the scanning time and the complexity of the imaging system. In this study, we tried to accurately reconstruct the object from limited projection based on compressed sensing. Firstly, we illuminated the object from random angles with limited number of projections. Then we obtained spatial frequency samples through Fourier diffraction theory. Secondly, we formulated the inverse problem of UDT by exploring the sparsity of the object. Thirdly, we solved the inverse problem by conjugate gradient method to reconstruct the object. We accurately reconstructed the object using the proposed method. Not only can the proposed method save scanning time to reduce the distortion by respiratory movement, but also can reduce cost and complexity of the system. Compared to the interpolation method, our method can reduce the reconstruction error and improve the structural similarity.

    Release date: Export PDF Favorites Scan
  • Study on the inverse problem of electrical impedance tomography based on self-diagnosis regularization

    The inverse problem of electrical impedance tomography (EIT) is seriously ill-posed, which restricts the clinical application of EIT. Regularization is an important numerical method to improve the stability of the EIT inverse problem as well as the resolution of the imaging. This paper proposes a self-diagnosis regularization method based on Tikhonov regularization and diagonal weight regularization method (DWRM). Firstly, the ill-posedness of the inverse problem is analyzed by sensitivity. Then, the performance of the self-diagnosis regularization is analyzed through the singular value theory. Finally, some simulated experiments including simulations and flume experiment are carried out and verify that the self-diagnosis regularization has better image quality and anti-noise ability than those of traditional regularization methods. The self-diagnosis regularization method weakens the ill-posedness of inverse problem of EIT and can prompt the practical application of EIT.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Study on the inverse problem of diffuse optical tomography based on improved stacked auto-encoder

    The inverse problem of diffuse optical tomography (DOT) is ill-posed. Traditional method cannot achieve high imaging accuracy and the calculation process is time-consuming, which restricts the clinical application of DOT. Therefore, a method based on stacked auto-encoder (SAE) was proposed and used for the DOT inverse problem. Firstly, a traditional SAE method is used to solved the inverse problem. Then, the output structure of SAE neural network is improved to a single output SAE, which reduce the burden on the neural network. Finally, the improved SAE method is used to compare with traditional SAE method and traditional levenberg-marquardt (LM) iterative method. The result shows that the average time to solve the inverse problem of the method proposed in this paper is only 1.67% of the LM method. The mean square error (MSE) value is 46.21% lower than the traditional iterative method, 61.53% lower than the traditional SAE method, and the image correlation coefficient(ICC) value is 4.03% higher than the traditional iterative method, 18.7% higher than the traditional SAE method and has good noise immunity under 3% noise conditions. The research results in this article prove that the improved SAE method has higher image quality and noise resistance than the traditional SAE method, and at the same time has a faster calculation speed than the traditional iterative method, which is conducive to the application of neural networks in DOT inverse problem calculation.

    Release date: Export PDF Favorites Scan
  • A research on epilepsy source localization from scalp electroencephalograph based on patient-specific head model and multi-dipole model

    Accurate source localization of the epileptogenic zone (EZ) is the primary condition of surgical removal of EZ. The traditional localization results based on three-dimensional ball model or standard head model may cause errors. This study intended to localize the EZ by using the patient-specific head model and multi-dipole algorithms using spikes during sleep. Then the current density distribution on the cortex was computed and used to construct the phase transfer entropy functional connectivity network between different brain areas to obtain the localization of EZ. The experiment result showed that our improved methods could reach the accuracy of 89.27% and the number of implanted electrodes could be reduced by (19.34 ± 7.15)%. This work can not only improve the accuracy of EZ localization, but also reduce the additional injury and potential risk caused by preoperative examination and surgical operation, and provide a more intuitive and effective reference for neurosurgeons to make surgical plans.

    Release date: Export PDF Favorites Scan
  • Developments of ex vivo cardiac electrical mapping and intelligent labeling of atrial fibrillation substrates

    Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content