In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.
The use of echocardiography ventricle segmentation can obtain ventricular volume parameters, and it is helpful to evaluate cardiac function. However, the ultrasound images have the characteristics of high noise and difficulty in segmentation, bringing huge workload to segment the object region manually. Meanwhile, the automatic segmentation technology cannot guarantee the segmentation accuracy. In order to solve this problem, a novel algorithm framework is proposed to segment the ventricle. Firstly, faster region-based convolutional neural network is used to locate the object to get the region of interest. Secondly, K-means is used to pre-segment the image; then a mean shift with adaptive bandwidth of kernel function is proposed to segment the region of interest. Finally, the region growing algorithm is used to get the object region. By this framework, ventricle is obtained automatically without manual localization. Experiments prove that this framework can segment the object accurately, and the algorithm of adaptive mean shift is more stable and accurate than the mean shift with fixed bandwidth on quantitative evaluation. These results show that the method in this paper is helpful for automatic segmentation of left ventricle in echocardiography.