west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "medical application" 7 results
  • Research Progress on Application of Gold Magnetic Nanocomposite in Biomedicine

    This paper provides a brief overview of the current research activities which focused on the bio-application of gold magnetic nanocomposite particles. By combining the magnetic characteristics of the iron oxide core with the unique features of nano-gold particles such as targeting by surface modification and optical properties, such composite nanoparticles have a wide range of applications in cancer hyperthermia, CT and MRI imaging, bio-separation, biosensors, gene diagnosis, drug targeting and many other biomedical fields.

    Release date: Export PDF Favorites Scan
  • Recent Progress of Research and Applications of Fractal and Its Theories in Medicine

    Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.

    Release date: Export PDF Favorites Scan
  • Additive Manufacturing and Its Medical Applications

    Additive manufacturing (AM) is a collection of technologies based on the layer-by-layer manufacturing. Characterized by its direct manufacturing and rapidity, it has been regarded by the Economist Journal as one of the key techniques which will trigger the third industry reformation. The present article, beginning with a brief introduction of the history of AM and the process of its major technologies, focuses on the advantages and disadvantages and medical applications of the technique.

    Release date: Export PDF Favorites Scan
  • Application of semantic segmentation based on convolutional neural network in medical images

    With the rapid development of network structure, convolutional neural networks (CNN) consolidated its position as a leading machine learning tool in the field of image analysis. Therefore, semantic segmentation based on CNN has also become a key high-level task in medical image understanding. This paper reviews the research progress on CNN-based semantic segmentation in the field of medical image. A variety of classical semantic segmentation methods are reviewed, whose contributions and significance are highlighted. On this basis, their applications in the segmentation of some major physiological and pathological anatomical structures are further summarized and discussed. Finally, the open challenges and potential development direction of semantic segmentation based on CNN in the area of medical image are discussed.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Biomedical applications of bionic untethered micro-nano robots

    Bionic untethered micro-nano robots, due to their advantages of small size, low weight, large thrust-to-weight ratio, strong wireless mobility, high flexibility and high sensitivity, have very important application values in the fields of biomedicine, such as disease diagnosis, minimally invasive surgery, targeted therapy, etc. This review article systematically introduced the manufacturing methods and motion control, and discussed the biomedical applications of bionic untethered micro-nano robots. Finally, the article discussed the possible challenges for bionic untethered micro-nano robots in the future. In summary, this review described bionic untethered micro-nano robots and their potential applications in biomedical fields.

    Release date: Export PDF Favorites Scan
  • Applications, industrial transformation and commercial value of brain-computer interface technology

    Brain-computer interface (BCI) is a revolutionary human-computer interaction technology, which includes both BCI that can output instructions directly from the brain to external devices or machines without relying on the peripheral nerve and muscle system, and BCI that bypasses the peripheral nerve and muscle system and inputs electrical, magnetic, acoustic and optical stimuli or neural feedback directly to the brain from external devices or machines. With the development of BCI technology, it has potential application not only in medical field, but also in non-medical fields, such as education, military, finance, entertainment, smart home and so on. At present, there is little literature on the relevant application of BCI technology, the current situation of BCI industrialization at home and abroad and its commercial value. Therefore, this paper expounds and discusses the above contents, which are expected to provide valuable information for the public and organizations, BCI researchers, BCI industry translators and salespeople, and improve the cognitive level of BCI technology, further promote the application and industrial transformation of BCI technology and enhance the commercial value of BCI, so as to serve mankind better.

    Release date: Export PDF Favorites Scan
  • Ethical considerations for medical applications of implantable brain-computer interfaces

    Implantable brain-computer interfaces (BCIs) have potentially important clinical applications due to the high spatial resolution and signal-to-noise ratio of electrodes that are closer to or implanted in the cerebral cortex. However, the surgery and electrodes of implantable BCIs carry safety risks of brain tissue damage, and their medical applications face ethical challenges, with little literature to date systematically considering ethical norms for the medical applications of implantable BCIs. In order to promote the clinical translation of this type of BCI, we considered the ethics of practice for the medical application of implantable BCIs, including: reducing the risk of brain tissue damage from implantable BCI surgery and electrodes, providing patients with customized and personalized implantable BCI treatments, ensuring multidisciplinary collaboration in the clinical application of implantable BCIs, and the responsible use of implantable BCIs, among others. It is expected that this article will provide thoughts and references for the research and development of ethics of the medical application of implantable BCI.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content