west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "metabolites" 4 results
  • The progress of association between estrogen metabolites and postmenopausal breast cancer

    Objective To summarize the research progress of postmenopausal breast cancer and estrogen metabolites, which is aimed at providing the basis for early diagnosis and early treatment of postmenopausal breast cancer, at the same time, providing beneficial information for the future study. Methods In recent years, the literatures about postmenopausal breast cancer and estrogen metabolites were reviewed from the databases of WanFang, VIP, CNKI, PubMed, and so on, to make an review. Results Estrogen metabolites had a dual role for postmenopausal breast cancer, such as 2-hydroxyestrone (2-OHE1), 2-methoxyestrone1 (2-MeOE1), and 4-methoxyestrone1 (4-MeOE1) played a protective role for postmenopausal breast cancer, but 4-hydroxyestrone (4-OHE1) and 16α-hydroxyestrone (16α-OHE1) played a carcinogenic role for postmenopausal breast cancer, so it needed to be further studied. Conclusions Estrogen metabolites may be a reliable predictor for the risk of postmenopausal breast cancer, it is not only to provide clues for the mechanism of postmenopausal breast cancer, but also provide new train of thought for early diagnosis and treatment of postmenopausal breast cancer.

    Release date:2018-09-11 11:11 Export PDF Favorites Scan
  • Research progress of effect of gut microbiota and its metabolites on coronary artery diseases

    Gut microbiota and its metabolites in various human diseases have gradually become a research hotspot in the current medical community. And coronary artery disease is currently one of the most threatening clinical cardiovascular diseases in the world, so the use of gut microbiota and its metabolites in the development of its pathophysiology has also received more and more attention. Therefore, this paper reviews the effects of gut microbiota and its metabolites on coronary artery disease, as well as the research progress of intervening gut microbiota and its metabolites as therapeutic targets, hoping to expand the future research direction in this field and provide new ideas with treating coronary artery disease.

    Release date: Export PDF Favorites Scan
  • Gas chromatography-mass spectrometry study on composition of volatile organic compounds in exhaled breath of radiation-damaged rats

    Objective To explore composition of volatile organic compounds (VOCs) in exhaled breath of low-dose radiation-damaged Sprague-Dawely (SD) rats by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS), and search for the differential metabolites of VOCs in the series of rats after radiation damage, and establish a noninvasive radiation damage detection method. Methods SD rats were randomly divided into five groups (a blank group, a 0.5-Gy group, a 1-Gy group, a 2-Gy group, and a 3-Gy group), with 8 rats in each group. A low-dose radiation injury model was established in rats. After the cobalt source radiation damage was performed, the body weight of rats was recorded, peripheral blood hematology was analyzed, and the exhaled breath of rats was collected on the 1st, 5th, 9th and 13th day. The composition of VOCs in the exhaled breath was analyzed by using the TD30-GC-MS technique, and multivariate statistical analyses were carried out to explore and obtain the differentiated metabolites after the radiation damage. Results After radiation damage, the rats showed a short-term decrease in body weight, peripheral blood and lung tissue sections were different, and the content of VOCs components in the exhaled breath of the damaged rats was significantly different from that of the rats in the blank group. Among them, four VOCs, acetophenone, nonanal, decanal and tetradecane increased, while heptane, chlorobenzene, paraxylene and m-dichlorobenzene decreased. Conclusions Through the GC-MS analysis of the exhaled breath of rats, eight components of VOCs in the exhaled breath of rats can be used as differential metabolites of radiation damage. This study lays a foundation for the establishment of a GC-MS analysis method for the components of VOCs in the exhaled breath of rats, as well as for the development of a nondestructive analytical assay for biological radiation damage.

    Release date: Export PDF Favorites Scan
  • Correlation between abnormal urinary organic acid metabolism and retinopathy of prematurity

    ObjectiveTo investigate the postnatal changes in urinary metabolic amino acid levels in infants with retinopathy of prematurity (ROP) and their effect on ROP, and to analyze the amino acid metabolic pathways that may be involved in the development of ROP. MethodsA retrospective cohort study. From January 2020 to December 2023, 65 premature infants with severe ROP (ROP group) who were hospitalized, born with gestational age <32 weeks in Children's Hospital Affiliated to Zhengzhou University were included in the study. Fifty premature infants with matched sex and gestational age and no ROP were selected as the control group. Urine amino acids and their derivatives were detected by gas chromatography-mass spectrometry. The two groups were compared by independent sample t test. The metabonomics of urinary amino acids was analyzed by orthogonal partial least squares discriminant analysis (OPLS-DA) model. The variable projection importance (VIP) score >1 suggested that the substance was two groups of differentially expressed amino acids. The predictive value of urinary amino acids for severe ROP was compared by using the receiver's operating characteristic (ROC) curve and the area under the curve. After t test and metabolomics analysis, the two groups of amino acids with large differences were normalized and compared by Pearson correlation analysis. The Kyoto Encyclopedia of Genes and Genomes database was used to analyze the metabolic pathways of differentially expressed amino acids involved in ROP. ResultsCompared with the control group, the concentrations of oxalic acid -2 and thiodiacetic acid-2 in urine metabolites of children in ROP group were significantly decreased, while the concentrations of 4-hydroxybutyric acid-2, 3-methylpentadienoic acid-2(1), 2-ketoglutarate-ox-2(2) and 3, 6-epoxy-dodecanedioic acid-2 were significantly increased, with statistical differences (t=0.036, 0.005, 0.038, 0.032, 0.022, 0.011; P<0.05). The results of OPLS-DA analysis showed that amino acids of urinary metabolites in ROP group and control group were distributed in the left and right regions of the scatter plot, and there was a satisfactory separation trend between the two groups (R2Ycum=0.057 4, Q2cum=0.025 7, P<0.05). As shown in the S-Plot, the amino acids biased towards two stages are glycolic acid-2, phosphoric acid-3, oxalic acid-2, thiodiacetic acid-2, 4-hydroxybutyric acid-2, 3-methylcrotonylglycine-1, 3-methylpentadienoic acid-2(1), 2-ketoglutarate-ox-2(2) and 3, 6-epoxy- dodecanedioic acid-2, respectively. Eleven differentially expressed amino acids with VIP score >1 were screened, among which the highest VIP score was oxalate-2, glycerate-3, phosphoric acid-3, 3-methylcrotonylglycine-1, uranoic acid -3 and thiodiacetic acid-2. The difference of amino acid concentration between the two groups was the highest in 4-hydroxybutyric acid-2 and thiodiacetic acid-2. The correlation between oxalic acid-2 and glycerate-3 was the highest (r=0.830, P<0.001), and most amino acids were positive correlated. ROC curve fitting analysis showed that the combined prediction of 11 differenly-expressed amino groups had the largest area under the curve (0.816), the cutoff value was 0.531, and the sensitivity and specificity were 83.1% and 70.0%, respectively. The enrichment analysis of these 11 amino acids with significant differences suggested that the main pathways involved included butyrate metabolism, glyoxylic acid and dicarboxylic acid metabolism and lipoic acid metabolism. ConclusionAbnormal amino acid metabolism of 4-hydroxybutyrate-2, 3-methylpentadienoic acid-2(1), thiodiacetic acid-2, 2-ketoglutarate-ox-2(2), 3, 6-epoxy-dodecanedioic acid-2 may have a certain effect on the occurrence of ROP.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content