west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "microfluidic chip" 4 results
  • Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants

    Microfluidic chips can be used to realize continuous cryoprotectants (CPA) loading/unloading for oocytes, reducing osmotic damage and chemical toxicity of CPA. In this study, five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading. The effects of flow rate, entrance angle, aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively. The experimental results showed that with the decrease of flow rates, the increase of aspect ratios and the decrease of turning raradius of microchannel, the mixing length decreased and the mixing velocity was promoted, while the entrance angle had little effect on the mixing efficiency. However, the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy. These results would provide a reference to the application of microfluidic chip in CPA mixing.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • Effect of cryoprotectant removal by microfluidic chip on developmental capacity of oocytes

    In order to reduce osmotic damage and chemical toxicity of cryoprotectants (CPA) to oocytes during unloading process, the microfluidic chip was used to remove CPA from porcine MⅡ oocytes in this study. Firstly, the effects of unloading time, composition and concentration of diluting solutions of microfluidic method on survival rate and developmental capacity of oocytes were studied, then microfluidic method was compared with traditional one-step and two-step CPA unloading protocols. The results showed that when the total time is 8 minutes, the survival rate and morula rate of oocytes treated with microfluidic method could achieve 95.99% ± 4.64% and 74.17% ± 1.18%, respectively, which were not significantly different from fresh control group (98.53% ± 2.94%; 78.22% ± 1.34%). In addition, 1 mol/L sucrose diluting solutions were more beneficial than other solutions, and it was also showed that microfluidic method achieved better survival, cleavage rate of oocytes than traditional methods. Microfluidic CPA removal protocol can reduce the damage to oocytes during unloading process, and may further improve the cryopreservation effect of oocytes.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique

    A high throughput measurement method of human red blood cells (RBCs) deformability combined with optical tweezers technology and the microfluidic chip was proposed to accurately characterize the deformability of RBCs statistically. Firstly, the effective stretching deformation of RBCs was realized by the interaction of photo-trapping force and fluid viscous resistance. Secondly, the characteristic parameters before and after the deformation of the single cell were extracted through the image processing method to obtain the deformation index of area and circumference. Finally, statistical analysis was performed, and the average deformation index parameters (\begin{document}$ \overline {D{I_S}} $\end{document}, \begin{document}$ \overline {D{I_C}} $\end{document}) were used to characterize the deformability of RBCs. A high-throughput detection system was built, and the optimal experimental conditions were obtained through a large number of experiments. Three groups of samples with different deformability were used for statistical verification. The results showed that the smallest cell component \begin{document}$ \overline {D{I_S}} $\end{document} was 9.71%, and the detection flux of 8-channel structure was about 370 cells/min. High-throughput detection and characterization methods can effectively distinguish different deformed RBCs statistically, which provides a solution for high-throughput deformation analysis of other types of samples.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • High stability enhanced ultrasonic microfluidic structure with flexible tip coupled bubbles

    Ultrasonic microfluidic technology is a technique that couples high-frequency ultrasonic excitation to microfluidic chips. To improve the issues of poor disturbance effects with flexible tip structures and the susceptibility of bubbles to thermal deformation, we propose an enhanced ultrasonic microchannel structure that couples flexible tips with bubbles aiming to improve the disturbance effects and the stability duration. Firstly, we used finite element analysis to simulate the flow field distribution characteristics of the flexible tip, the bubble, and the coupling structure and obtained the steady-state distribution characteristics of the velocity field. Next, we fabricated ultrasonic microfluidic chips based on these three structures, employing 2.8 μm polystyrene microspheres as tracers to analyze the disturbance characteristics of the flow field. Additionally, we analyzed the bubble size and growth rate within the adhering bubbles and coupling structures. Finally, we verified the applicability of the coupling structure for biological samples using human red blood cells (RBCs). Experimental results indicated that, compared to the flexible tip and adhering bubble structures, the flow field disturbance range of the coupling structure increased by 439.53% and 133.48%, respectively; the bubble growth rate reduced from 14.4% to 3.3%. The enhanced ultrasonic microfluidic structure proposed in this study shows great potential for widespread applications in micro-scale flow field disturbance and particle manipulation.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content