When applying deep learning to the automatic segmentation of organs at risk in medical images, we combine two network models of Dense Net and V-Net to develop a Dense V-network for automatic segmentation of three-dimensional computed tomography (CT) images, in order to solve the problems of degradation and gradient disappearance of three-dimensional convolutional neural networks optimization as training samples are insufficient. This algorithm is applied to the delineation of pelvic endangered organs and we take three representative evaluation parameters to quantitatively evaluate the segmentation effect. The clinical result showed that the Dice similarity coefficient values of the bladder, small intestine, rectum, femoral head and spinal cord were all above 0.87 (average was 0.9); Jaccard distance of these were within 2.3 (average was 0.18). Except for the small intestine, the Hausdorff distance of other organs were less than 0.9 cm (average was 0.62 cm). The Dense V-Network has been proven to achieve the accurate segmentation of pelvic endangered organs.
The classification of lung tumor with the help of computer-aided diagnosis system is very important for the early diagnosis and treatment of malignant lung tumors. At present, the main research direction of lung tumor classification is the model fusion technology based on deep learning, which classifies the multiple fusion data of lung tumor with the help of radiomics. This paper summarizes the commonly used research algorithms for lung tumor classification, introduces concepts and technologies of machine learning, radiomics, deep learning and multiple data fusion, points out the existing problems and difficulties in the field of lung tumor classification, and looks forward to the development prospect and future research direction of lung tumor classification.