west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "near-infrared fluorescence" 2 results
  • Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI.2011 1 0292374.1.

    Release date: Export PDF Favorites Scan
  • The first clinical verification of near-infrared fluorescence projection navigation technology in liver cancer surgery

    Objective The aim of this article is to verify the clinical effect of the near-infrared fluorescent liver cancer surgery projection navigation system without display screen. Methods Three patients who need to undergo open hepatectomy for liver cancer in the Affiliated Hospital of Southwest Medical University from March 2021 to May 2021 were included, verifying the accuracy, stability, and time delay effect of the self-developed near-infrared fluorescence projection navigation system for the location of tumor in surgeries. Results The intraoperative tumor location could be accurately displayed by the near-infrared fluorescence projection system and there was no significant difference between the location of the tumor displayed by intraoperative ultrasound. The tumor location displayed by the near-infrared fluorescence projection system was not influenced by the tumor movement and had no visual-time delay. Postoperative pathology confirmed that the projection range was consistent with the tumor range. Conclusion This near-infrared fluorescence projection technology innovates the intraoperative tumor imaging mode and can accurately navigate open hepatectomy in small sample trials, and it is expected to achieve wide clinical application through subsequent iterative optimization and verification.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content