west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "non-invasive detection" 4 results
  • Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n=24, (44.6±9.0) years] and subjects with cardiovascular diseases [group B, n=33, (57.2±9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function.

    Release date: Export PDF Favorites Scan
  • Study on Non-invasive Detection of Atherosclerosis Based on Electrocardiogram and Pulse Wave Signals

    Artery stiffness is a main factor causing the various cardiovascular diseases in physiology and pathology. Therefore, the development of the non-invasive detection of arteriosclerosis is significant in preventing cardiovascular problems. In this study, the characterized parameters indicating the vascular stiffness were obtained by analyzing the electrocardiogram (ECG) and pulse wave signals, which can reflect the early change of vascular condition, and can predict the risk of cardiovascular diseases. Considering the coupling of ECG and pulse wave signals, and the association with atherosclerosis, we used the ECG signal characteristic parameters, including RR interval, QRS wave width and T wave amplitude, as well as the pulse wave signal characteristic parameters (the number of peaks, 20% main wave width, the main wave slope, pulse rate and the relative height of the three peaks), to evaluate the samples. We then built an assessment model of arteriosclerosis based on Adaptive Network-based Fuzzy Interference System (ANFIS) using the obtained forty sets samples data of ECG and pulse wave signals. The results showed that the model could noninvasively assess the arteriosclerosis by self-learning diagnosis based on expert experience, and the detection method could be further developed to a potential technique for evaluating the risk of cardiovascular diseases. The technique will facilitate the reduction of the morbidity and mortality of the cardiovascular diseases with the effective and prompt medical intervention.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n=24, (44.6±9.0) years] and subjects with cardiovascular diseases [group B, n=33, (57.2±9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function.

    Release date: Export PDF Favorites Scan
  • Realization of non-invasive blood glucose detector based on nonlinear auto regressive model and dual-wavelength

    The use of non-invasive blood glucose detection techniques can help diabetic patients to alleviate the pain of intrusive detection, reduce the cost of detection, and achieve real-time monitoring and effective control of blood glucose. Given the existing limitations of the minimally invasive or invasive blood glucose detection methods, such as low detection accuracy, high cost and complex operation, and the laser source's wavelength and cost, this paper, based on the non-invasive blood glucose detector developed by the research group, designs a non-invasive blood glucose detection method. It is founded on dual-wavelength near-infrared light diffuse reflection by using the 1 550 nm near-infrared light as measuring light to collect blood glucose information and the 1 310 nm near-infrared light as reference light to remove the effects of water molecules in the blood. Fourteen volunteers were recruited for in vivo experiments using the instrument to verify the effectiveness of the method. The results indicated that 90.27% of the measured values of non-invasive blood glucose were distributed in the region A of Clarke error grid and 9.73% in the region B of Clarke error grid, all meeting clinical requirements. It is also confirmed that the proposed non-invasive blood glucose detection method realizes relatively ideal measurement accuracy and stability.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content