west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "nonlinear" 11 results
  • Study on Nonlinear Dynamic Characteristic Indexes of Epileptic Electroencephalography and Electroencephalography Subbands

    Electroencephalogram (EEG) is the primary tool in investigation of the brain science. It is necessary to carry out a deepgoing study into the characteristics and information hidden in EEGs to meet the needs of the clinical research. In this paper, we present a wavelet-nonlinear dynamic methodology for analysis of nonlinear characteristic of EEGs and delta, theta, alpha, and beta sub-bands. We therefore studied the effectiveness of correlation dimension (CD), largest Lyapunov exponen, and approximate entropy (ApEn) in differentiation between the interictal EEG and ictal EEG based on statistical significance of the differences. The results showed that the nonlinear dynamic characteristic of EEG and EEG subbands could be used as effective identification statistics in detecting seizures.

    Release date: Export PDF Favorites Scan
  • Application of Linear and Nonlinear Characteristics of Heart Rate Variability in Assessment of Autonomic Nervous System Activity

    Calculation of linear parameters, such as time-domain and frequency-domain analysis of heart rate variability (HRV), is a conventional method for assessment of autonomic nervous system activity. Nonlinear phenomena are certainly involved in the genesis of HRV. In a seemingly random signal the Poincaré plot can easily demonstrate whether there is an underlying determinism in the signal. Linear and nonlinear analysis methods were applied in the computer words inputting experiments in this study for physiological measurement. This study therefore demonstrated that Poincaré plot was a simple but powerful graphical tool to describe the dynamics of a system.

    Release date: Export PDF Favorites Scan
  • Application of Improved Locally Linear Embedding Algorithm in Dimensionality Reduction of Cancer Gene Expression Data

    Cancer gene expression data have the characteristics of high dimensionalities and small samples so it is necessary to perform dimensionality reduction of the data. Traditional linear dimensionality reduction approaches can not find the nonlinear relationship between the data points. In addition, they have bad dimensionality reduction results. Therefore a multiple weights locally linear embedding (LLE) algorithm with improved distance is introduced to perform dimensionality reduction in this study. We adopted an improved distance to calculate the neighbor of each data point in this algorithm, and then we introduced multiple sets of linearly independent local weight vectors for each neighbor, and obtained the embedding results in the low-dimensional space of the high-dimensional data by minimizing the reconstruction error. Experimental result showed that the multiple weights LLE algorithm with improved distance had good dimensionality reduction functions of the cancer gene expression data.

    Release date: Export PDF Favorites Scan
  • A Comparative Study of Pathological Voice Based on Traditional Acoustic Characteristics and Nonlinear Features

    By analyzing the mechanism of pronunciation, traditional acoustic parameters, including fundamental frequency, Mel frequency cepstral coefficients (MFCC), linear prediction cepstrum coefficient (LPCC), frequency perturbation, amplitude perturbation, and nonlinear characteristic parameters, including entropy (sample entropy, fuzzy entropy, multi-scale entropy), box-counting dimension, intercept and Hurst, are extracted as feature vectors for identification of pathological voice. Seventy-eight normal voice samples and 73 pathological voice samples for /a/, and 78 normal samples and 80 pathological samples for /i/ are recognized based on support vector machine (SVM). The results showed that compared with traditional acoustic parameters, nonlinear characteristic parameters could be well used to distinguish between healthy and pathological voices, and the recognition rates for /a/ were all higher than those for /i/ except for multi-scale entropy. That is why the /a/ sound data is used widely in related research at home and abroad for obtaining better identification of pathological voices. Adopting multi-scale entropy for /i/ could obtain higher recognition rate than /a/ between healthy and pathological samples, which may provide some useful inspiration for evaluating vocal compensatory function.

    Release date: Export PDF Favorites Scan
  • Stability Analysis of Susceptible-Infected-Recovered Epidemic Model

    With the range of application of computational biology and systems biology gradually expanding, the complexity of the bioprocess models is also increased. To address this difficult problem, it is required to introduce positive alternative analysis method to cope with it. Taking the dynamic model of the epidemic control process as research object, we established an evaluation model in our laboratory. Firstly, the model was solved with nonlinear programming method. The results were shown to be good. Based on biochemical systems theory, the ODE dynamic model was transformed into S-system. The eigen values of the model showed that the system was stable and contained oscillation phenomenon. Next the sensitivities of rate constant and logarithmic gains of the three key parameters were analyzed, as well as the robust of the system. The result indicated that the biochemical systems theory could be applied in different fields more widely.

    Release date: Export PDF Favorites Scan
  • Study on the property of correlation dimension of sleep apnea syndrome electroencephalogram

    Sleep apnea syndrome (SAS) is a kind of common and harmful systemic sleep disorder. SAS patients have significant iconography changes in brain structure and function, and electroencephalogram (EEG) is the most intuitive parameter to describe the sleep process which can reflect the electrical activity and function of brain tissues. Based on the non-stationary and nonlinear characteristics of EEG, this paper analyzes the correlation dimension of sleep EEG in patients with SAS. Six SAS patients were classed as SAS group and six healthy persons were classified into a control group. The results showed that the correlation dimension of sleep EEG in the SAS group and the control group decreased gradually with the deepening of sleep, and then increased to the level of awake and light sleep stage with rapid eye movement (REM). The correlation dimension of SAS group was significantly lower than that of control group (P<0.01) throughout all the stages. The results suggested that there were significant nonlinear dynamic differences between the EEG signals of SAS patients and of healthy people, which provided a new direction for the study of the physiological mechanism and automatic detection of SAS.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • A plane-based hand-eye calibration method for surgical robots

    In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid’s surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.

    Release date:2017-04-13 10:03 Export PDF Favorites Scan
  • Detection study of walking segments of children with cerebral-palsy based on surface electromyographic signals

    In this study, surface electromyography (sEMG) of the lower limbs of cerebral-palsy (CP) subjects in gait cycle was recorded and its parameters of gait cycle characters were analyzed to assess their clinical severity. Three algorithms, including integrated profile (IP), sample-entropy (SampEN) and smooth nonlinear energy operator (SNEO) algorithm, were applied to calculate the duration of walking sEMG segments in simulated SEMG signals. After that, the efficiency and accuracy were compared among these three algorithms. SNEO was then selected as the optimal algorithm among the three algorithms and employed for real sEMG signal processing of CP subjects. The results indicated that there was no significant difference in the accuracy of sEMG segement detection for the three algorithms. However, the computation speed of SNEO algorithm was much faster than those of the others and thus it was a suitable algorithm for detecting walking sEMG segments of CP subjects. In addition, the positive correlation was found between the clinical severity and the mean duration of walking sEMG segments in CP subjects. The results indicated that there was a significant difference in the three groups of CP subjects with different levels of severity. Our findings showed that the mean duration of walking sEMG segments could be considered as an assistant index to evaluate the clinical severity of CP subjects.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Research on adaptive quasi-linear viscoelastic model for nonlinear viscoelastic properties of in vivo soft tissues

    The mechanical behavior modeling of human soft biological tissues is a key issue for a large number of medical applications, such as surgery simulation, surgery planning, diagnosis, etc. To develop a biomechanical model of human soft tissues under large deformation for surgery simulation, the adaptive quasi-linear viscoelastic (AQLV) model was proposed and applied in human forearm soft tissues by indentation tests. An incremental ramp-and-hold test was carried out to calibrate the model parameters. To verify the predictive ability of the AQLV model, the incremental ramp-and-hold test, a single large amplitude ramp-and-hold test and a sinusoidal cyclic test at large strain amplitude were adopted in this study. Results showed that the AQLV model could predict the test results under the three kinds of load conditions. It is concluded that the AQLV model is feasible to describe the nonlinear viscoelastic properties of in vivo soft tissues under large deformation. It is promising that this model can be selected as one of the soft tissues models in the software design for surgery simulation or diagnosis.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Intermuscular coupling based on wavelet packet-cross frequency coherence

    Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and n:m coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet-n:m coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the n:m coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio n:m and m:n. The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet-n:m coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content