west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "pH-stat strategy" 1 results
  • Effect of Different Gases and Hematocrits on Cerebral Injury During Deep Hypothermic Circulatory Arrest in Piglet

    Objective To investigate different gases and hematocrits on cerebral injury during deep hypothermic circulatory arrest (DHCA) in a piglet model including monitoring by near-infrared spectroscopy (NIRS). Methods Twenty-four piglets were assigned to 4 groups with respect to different blood gas and hematocrit during DHCA. Group A: hematocrit was maintained between 0.25 to 0.30, pH-stat strategy during cooling phases and alpha stat strategy in other phases; group B: hematocrit was maintained between 0.25 to 0.30 and alpha stat strategy; group C: hematocrit was maintained between 0.20 to 0.25, pH-stat strategy during cooling phases and alpha stat strategy in other phases; group D: hematocrit was maintained between 0.20 to 0.25 and alpha stat strategy. Cerebral oxygenations of piglets were monitored continuously by NIRS. The brain was fixed in situ at 6 hours after operation and a histological score for neurological injury was assessed. Results Oxygenated hemoglobin (HbO2) and total hemoglobin (HbT) signals detected by NIRS were significantly lower in group D than those in group A and group B during cooling (Plt;0.05). Oxygenated hemoglobin nadir time was significantly shorter in group A(Plt;0.05). All piglets with oxygenated hemoglobin signal nadir time less than 25 minutes were free from histological evidence of brain injury. Conclusion Combination of pH-stat strategy and higher hematocrit reduces neurological injury after DHCA.

    Release date:2016-08-30 06:25 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content