ObjectiveCombined with long non-coding RNA (lncRNA) to find a regression model that can be used to predict the survival rate of patients with colon cancer before operation.MethodsThe clinical information and gene expression information of patients with colon cancer were downloaded by using TCGA database. The differentially expressed lncRNAs in tumor and paracancerous tissues were screened out, and then combined with the clinical information of patients to construct Cox proportional hazard regression model.ResultsA total of 26 kinds of lncRNAs with statistical difference in gene expression between paracancerous tissues and tumor tissues were selected (P<0.05). Through repeated screening and comparison of prediction efficiency, the prediction model was finally selected, which was constructed by patients’ age, M stage, N stage, and three kinds of lncRNAs (ZFAS1, SNHG25, and SNHG7) gene expression level: age [HR=4.00, 95%CI: (1.48, 10.84), P=0.006], M stage [HR=3.96, 95%CI: (2.23, 7.04), P<0.001], N stage [HR=1.87, 95%CI: (1.24, 2.84), P=0.003], ZFAS1 gene expression level [HR=0.60, 95%CI: (0.41, 0.86), P=0.006], SNHG25 gene expression level [HR=0.85, 95%CI: (0.73, 1.00), P=0.045], and SNHG7 gene expression level [HR=2.32, 95%CI: (1.53, 3.52), P<0.001] were all independent risk factors for postoperative survival of patients with colon cancer. The area under the ROC curves for predicting 1, 3, and 5-year overall survival were 0.802, 0.828, and 0.771, respectiely, which had a good prediction ability.ConclusionThe predictive model constructed by the combination of ZFAS1, SNHG25, SNHG7 genes expression level with M stage, N stage, and age can better predict the overall survival rate of patients before operation, which can effectively guide clinical decision-making and choose the most suitable treatment method for patients.