west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "random walk" 2 results
  • Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K-means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor’s manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Lung nodule segmentation based on fuzzy c-means clustering and improved random walk algorithm

    Accurate segmentation of pulmonary nodules is an important basis for doctors to determine lung cancer. Aiming at the problem of incorrect segmentation of pulmonary nodules, especially the problem that it is difficult to separate adhesive pulmonary nodules connected with chest wall or blood vessels, an improved random walk method is proposed to segment difficult pulmonary nodules accurately in this paper. The innovation of this paper is to introduce geodesic distance to redefine the weights in random walk combining the coordinates of the nodes and seed points in the image with the space distance. The improved algorithm is used to achieve the accurate segmentation of pulmonary nodules. The computed tomography (CT) images of 17 patients with different types of pulmonary nodules were selected for segmentation experiments. The experimental results are compared with the traditional random walk method and those of several literatures. Experiments show that the proposed method has good accuracy in the segmentation of pulmonary nodule, and the accuracy can reach more than 88% with segmentation time is less than 4 seconds. The results could be used to assist doctors in the diagnosis of benign and malignant pulmonary nodules and improve clinical efficiency.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content