west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "regenerative medicine" 6 results
  • Research Progress of Cell Sheet Technology and Its Applications in Tissue Engineering and Regenerative Medicine

    Cell sheet engineering is an important technology to harvest the cultured cells in the form of confluent monolayers using a continuous culture method and a physical approach. Avoiding the use of enzymes, expended cells can be harvested together with endogenous extracellular matrix, cell-matrix contacts, and cell-cell contacts. With high efficiency of cell loading ability and without using exogenous scaffolds, cell sheet engineering has several advantages over traditional tissue engineering methods. In this article, we give an overview on cell sheet technology about its applications in the filed of tissue regeneration, including the construction of soft tissues (corneal, mucous membrane, myocardium, blood vessel, pancreas islet, liver, bladder and skin) and hard tissues (bone, cartilage and tooth root). This techonoly is promising to provide a novel strategy for the development of tissue engineering and regenerative medicine. And further works should be carried out on the operability of this technology and its feasibility to construct thick tissues.

    Release date: Export PDF Favorites Scan
  • Application Prospect of Stem Cell-derived Microvesicles in Regeneration of Injured Tissues

    More and more evidence indicates that microvesicles (MVs) play a key role in cell-to-cell communication. The MVs are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the cell surface membranes of most types. Components of donor cells are incorporated into MVs that contain bioactive lipids, proteins, genetic cargoes. MVs derived from stem cells may reprogram cells that survived in injury tissue and favor tissue regeneration by delivering their bioactive cargoes to influence the behaviors of recipient cells. Compared with mesenchymal stem cells (MSCs), MVs derived from MSCs were found to mimic the beneficial effects of these cells. These proregenerative effects mediated by MVs can be explained by the fact that MVs are enriched in bioactive lipids, anti-apoptotic and pro-stimulatory growth factors or cytokines, and deliver mRNAs, regulatory miRNAs and proteins that improve overall cell function. Therefore, it opens novel perspectives in exploiting these MVs in tissue regeneration and repair. In addition, the use of MVs instead of stem cells could represent a safe and potentially more advantageous alternative to cell-therapy approaches.

    Release date: Export PDF Favorites Scan
  • Research Advances in Regeneration of Soft Tissue with Small Intestinal Submucosa

    Small intestinal submucosa (SIS) is a natural decellularized extracellular matrix material. Due to its excellent biocompatibility, unique biomechanical properties and biological activity, it has been widely used as a scaffold in regenerative medicine. This article reviews the recent progress in the characterization and medical application of SIS respectively. The specific biological properties of the SIS, as well as its interaction with cells, are highlighted. Some of the SIS products and clinical cases are also reviewed and discussed.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Update on nonpharmacologic treatment for heart failure

    Heart failure is a global problem that occurs in 38 million patients worldwide, and the number is dramatically increasing in elderly society. Meanwhile, heart dysfunction is also the most common disease among hospitalized patients more than 65 years, especially in high-income countries. Approximately, one million patients are hospitalized because of heart failure in the world every year. Drug therapy is currently the most popular treatment for heart failure in clinic, however, the effects are limited. Therefore, exploring novel treatment strategies gradually becomes a focus not only in basic but also in clinical research.

    Release date:2017-04-24 03:51 Export PDF Favorites Scan
  • Research progress of decellularized extracellular matrix hydrogel in regenerative medicine

    Decellularized extracellular matrix (dECM) has been widely used as a scaffold for regenerative medicine due to its high biomimetic and excellent biocompatibility. As a functional polymer material with high water content and controlled fluidity, hydrogel is very promising for some minimally invasive surgery in clinical practice. In recent years, with the rapid development of hydrogel theory and technology, dECM hydrogel has gradually become a research hotspot in the field of regenerative medicine. In this paper, the related researches in recent years are reviewed regarding the preparation of dECM hydrogel and its preclinical application. The future clinical use is also prospected.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema

    ObjectiveTo summarize the progress of the roles and mechanisms of various types of stem cell-based treatments and their combination therapies in both animal studies and clinical trials of lymphedema. MethodsThe literature on stem cell-based treatments for lymphedema in recent years at home and abroad was extensively reviewed, and the animal studies and clinical trials on different types of stem cells for lymphedema were summarized.ResultsVarious types of stem cells have shown certain effects in animal studies and clinical trials on the treatment of lymphedema, mainly through local differentiation into lymphoid endothelial cells and paracrine cytokines with different functions. Current research focuses on two cell types, adipose derived stem cells and bone marrow mesenchymal stem cells, both of which have their own advantages and disadvantages, mainly reflected in the therapeutic effect of stem cells, the difficulty of obtaining stem cells and the content in vivo. In addition, stem cells can also play a synergistic role in combination with other treatments, such as conservative treatment, surgical intervention, cytokines, biological scaffolds, and so on. However, it is still limited to the basic research stage, and only a small number of studies have completed clinical trials. ConclusionStem cells have great transformation potential in the treatment of lymphedema, but there is no unified standard in the selection of cell types, the amount of transplanted cells, and the timing of transplantation.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content