Somatosensory vibration can stimulate somatosensory area of human body, and this stimulation is tranferred to somatosensory nerves, and influences the somatic cortex, which is on post-central gyrus and paracentral lobule posterior of cerebral cortex, so that it alters the functional status of brain. The aim of the present study was to investigate the neural mechanism of brain state induced by somatosensory vibration. Twelve subjects were involved in the 20 Hz vibration stimulation test. Linear and nonlinear methods, such as relative change of relative power (RRP), Lempel-Ziv complexity (LZC) and brain network based on cross mutual information (CMI), were applied to discuss the change of brain under somatosensory vibration stimulation. The experimental results showed the frequency following response (FFR) by RRP of spontaneous electroencephalogram (EEG) in 20 Hz vibration, and no obvious change by LZC. The information transmission among various cortical areas enhanced under 20 Hz vibration stimulation. Therefore, 20 Hz somatosensory vibration may be able to adjust the functional status of brain.
Autism spectrum disorders (ASD) is a complex developmental disorder characterized by impairments in social communication and stereotyped behaviors. Electroencephalograph (EEG), which can measure neurological changes associated with cortical synaptic activity, has been proven to be a powerful tool for detecting neurological disorders. The main goal of this study is to explore the effects of repetitive transcranial magnetic stimulation (rTMS) on behavioral response and EEG. We enrolled 32 autistic children, rTMS group (n = 16) and control group (n = 16) and calculated the relative power of the δ, θ, α, β rhythms in each brain area by fast Fourier transform and Welch’s method. We also compared Autism Behavior Checklist (ABC) scores of the patients before and after rTMS. The results showed a significant decrease in the relative power of the δ band on right temporal region and parietal region and also a decreased coherence on frontal region after rTMS intervention. The study proves that rTMS could have positive effects on behavior of attention, execution ability, and language ability of children and could reduce their stereotyped behavior and radical behavior.
Sub-threshold depression refers to a psychological sub-health state that fails to meet the diagnostic criteria for depression. Appropriate intervention can improve the state and reduce the risks of disease development. In this paper, we focus on music neurofeedback stimulation improving emotional state of sub-threshold depression college students.Twenty-four college students with sub-threshold depression participated in the experiment, 16 of whom were members of the experimental group. Decompression music based on spectrum classification was applied to 16 experimental group participants for 10 min/d music neural feedback stimulation with a period of 14 days, and no stimulation was applied to 8 control group participants. Three feature parameters of electroencephalogram (EEG) relative power, sample entropy and complexity were extracted for analysis. The results showed that the relative power of α、β and θ rhythm increased, while δ rhythm decreased after the stimulation of musical nerofeedback in the experimental group. The sample entropy and complexity were significantly increased after the stimulation, and the differences of these parameters pre and post stimulation were statistically significant (P < 0.05), while the differences of all feature parameters in the control group were not statistically significant. In the experimental group, the scores of self-rating depression scale(SDS) decreased after the stimulation of musical nerofeedback, indicating that the depression was improved. The result of this study showed that music neurofeedback stimulation can improve sub-threshold depression and may provides an effective new way for college students to self-regulation of emotion.