west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "self-stabilization" 1 results
  • Application of self-stabilizing zero-profile three-dimensional printed artificial vertebral bodies for treatment of cervical spondylotic myelopathy

    Objective To evaluate the safety and effectiveness of applying self-stabilizing zero-profile three-dimensional (3D) printed artificial vertebral bodies in anterior cervical corpectomy and fusion (ACCF) for cervical spondylotic myelopathy. Methods A retrospective analysis was conducted on 37 patients diagnosed with cervical spondylotic myelopathy who underwent single-level ACCF using either self-stabilizing zero-profile 3D-printed artificial vertebral bodies (n=15, treatment group) or conventional 3D-printed artificial vertebral bodies with titanium plates (n=22, control group) between January 2022 and February 2023. There was no significant difference in age, gender, lesion segment, disease duration, and preoperative Japanese Orthopedic Association (JOA) score between the two groups (P>0.05). Operation time, intraoperative bleeding volume, hospitalization costs, JOA score and improvement rate, incidence of postoperative prosthesis subsidence, and interbody fusion were recorded and compared between the two groups. Results Compared with the control group, the treatment group had significantly shorter operation time and lower hospitalization costs (P<0.05); there was no significant difference in intraoperative bleeding volume between the two groups (P>0.05). All patients were followed up, with a follow-up period of 6-21 months in the treatment group (mean, 13.7 months) and 6-19 months in the control group (mean, 12.7 months). No dysphagia occurred in the treatment group, while 5 cases occurred in the control group, with a significant difference in the incidence of dysphagia between the two groups (P<0.05). At 12 months after operation, both groups showed improvement in JOA scores compared to preoperative scores, with significant differences (P<0.05); however, there was no significant difference in the JOA scores and improvement rate between the two groups (P>0.05). Radiographic examinations showed the interbody fusion in both groups, and the difference in the time of interbody fusion was not significant (P>0.05). At last follow-up, 2 cases in the treatment group and 3 cases in the control group experienced prosthesis subsidence, with no significant difference in the incidence of prosthesis subsidence (P>0.05). There was no implant displacement or plate-screw fracture during follow-up.Conclusion The use of self-stabilizing zero-profile 3D-printed artificial vertebral bodies in the treatment of cervical spondylotic myelopathy not only achieves similar effectiveness to 3D-printed artificial vertebral bodies, but also reduces operation time and the incidence of postoperative dysphagia.

    Release date:2024-05-13 02:30 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content