The new mechanisms of automaticity controlled by the calcium and membrane clocks in sinoatrial node are helpful to revealing the sinus arrhythmia, but the present calcium dynamic model is only on the single cell level. In the present study, a central and peripheral single cell model was developed, and by exponentially changing the cell membrane capacitance, size, conductance and gap junction from the center to the periphery, a two-dimensional inhomogeneous sinus and atrial model was created on the basis of the anatomical structure. Five-point difference and finite element methods were used to process the internal grids and the borders. Irregular borders were defined by creating segment trial functions. Quantitative experiments suggested the consistency of the central and peripheral action potentials with related reports in amplitude, cycle length, maximum diastolic potential and upstroke velocity. Functions of the calcium and membrane clocks on the leading pacemaker site and upstroke velocity as well as the effects of the atrial premature beat on the sinus automaticity were also in good agreement with those in other studies. The developed model is helpful for deeply studying relative roles of the calcium and membrane clocks in automaticity and the relations with electrical activities in atrium. At the same time it will lay the foundation for building three-dimensional sinus and atrial organic models.
Objective To explore the role of over-expression of TBX3 and TBX18 in inducing human induced pluripotent stem cells (HiPS) to enrich and differentiate into sinoatrial node-like cells. Methods The expression of stemness markers OCT3/4, SOX2, and NANOG in HiPS was detected by real-time fluorescence quantitative PCR (qRT- PCR), and compared with human embryonic stem cells (hESCs). Immunofluorescence staining was used to observe the expression of HiPS stemness markers OCT3/4, NANOG, SSEA4, and TRA-1-60. The HiPS were directional differentiated into cardiomyocytes, the expressions of ISL1, NK2 homeobox 5 (NKX2-5), ACTN1, and TNNT2 were detected by qRT-PCR, and human adult cardiomyocytes (hACM) were used as positive control. Immunofluorescence staining was used to observe the expressions of NKX2-5, cardiac troponin (cTnT), α-actinin, atria myosin light chain 2A (MLC-2A), and ventricular myosin light chain 2V (MLC-2V). The positive rate of α-actinin was detected by flow cytometry. On the 3rd day after HiPS were differentiated into cardiomyocytes (mesodermal stage), lentiviral over-expressions of sinoatrial node-related genes TBX3 and TBX18 were carried out for 21 days. The relative expressions of specific markers TBX3, TBX18, SHOX2, NKX2-5, HCN4, and HCN1 in sinoatrial node cells were detected by qRT-PCR, and compared with enhanced green fluorescent protein blank virus. Results OCT3/4, SOX2, and NANOG were highly expressed in HiPS and ESCs, and there was no significant difference in the relative expression of each gene (P>0.05); OCT3/4 and NANOG were specifically distributed in the nucleus of HiPS, while SSEA4 and TRA-1-60 were distributed in the cell membrane. The relative expressions of ISL1 gene at 5, 7, 21, and 28 days and NKX2-5 gene at 7, 21, and 28 days of HiPS differentiation into cardiomyocytes were significantly higher than those of hACM (P<0.05), and the relative expressions of ACTN1 and TNNT2 genes at 3, 5, 7, and 21 days of HiPS differentiation into cardiomyocytes were significantly lower than those of hACM (P<0.05). NKX2-5 was expressed in most of the nuclei, cTnT and α-actinin, MLC-2A and MLC-2V signals were localized in the cytoplasm, presenting a texture-like structure of muscle nodules. Flow cytometry results showed that HiPS was successfully induced to differentiate into cardiomyocytes. The expressions of TBX18, SHOX2, HCN4, and HCN1 in the over-expression TBX3 group were up-regulated when compared with the control group, and difference in the relative expression of SHOX2 gene was significant (P<0.05); the relative expression of NKX2-5 gene was lower than that in the control group, but there was no significant difference (P>0.05). There was no significant difference in the relative expression of each gene between the over-expressed TBX18 group and the control group (P>0.05). Conclusion HiPS and hESCs have similar pluripotency, and we have established a stable method for maintaining and culturing the stemness of HiPS. A technological platform for the efficient differentiation of HiPS into cardiomyocytes has been successfully established. Although TBX3 and TBX18 do not play a significant role in promoting the enrichment and differentiation of HiPS into sinoatrial node-like cells, TBX3 shows a certain promoting trend, which can be further explored in the future.