west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "solid lipid nanoparticles" 2 results
  • Cytological Study in vitro on Co-delivery of siRNA and Paclitaxel within Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Tumors

    Multidrug resistance (MDR) remains the major obstacle to the success of clinical cancer chemotherapy. P-glycoprotein (P-gp), encoded by the MDR1, is an important part with complex mechanisms associated with the MDR. In order to overcome the MDR of tumors, we in the present experimental design incorporated small interfering RNA (siRNA) targeting MDR1 gene and anticancer drug paclitaxel (PTX) into the solid lipid nanoparticles (SLNs) to achieve the combinational therapeutic effects of genetherapy and chemotherapy. In this study, siRNA-PTX-SLNs were successfully prepared. The cytotoxicity of blank SLNs and siRNA-PTX-SLNs in MCF-7 cells and MCF-7/ADR cells were detected by MTT; and the uptake efficiency of PTX in MCF-7/ADR cells were detected via HPLC method; quantitative real-time PCR and flow cytometry were performed to investigate the silencing effect of siRNA-PTX-SLNs on MDR1 gene in MCF-7/ADR cells. The results showed that PTX loaded SLNs could significantly inhibit the growth of tumor cells, and more importantly, the MDR tumor cells treated with siRNA-PTX-SLNs showed the lowest viability. HPLC study showed that SLNs could enhance the cellular uptake for PTX. Meanwhile, siRNA delivered by SLNs significantly decreased the P-gp expression in MDR tumor cells, thus increased the cellular accumulation of rhodamine123 as a P-gp substrate. In conclusion, the MDR1 gene could be silenced by siRNA-PTX-SLNs, which could promote the growth inhibition efficiency of PTX on tumor cells, leading to synergetic effect on MDR tumor therapy.

    Release date: Export PDF Favorites Scan
  • Experimental study of resveratrol-solid lipid nanoparticles in promotion of osteogenic differentiation of bone marrow mesenchymal stem cells

    Objective To investigate the effect of solid lipid nanoparticles (SLNs) on enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro by resveratrol (Res), and provide a method for the treatment of bone homeostasis disorders. MethodsRes-SLNs were prepared by high-temperature emulsification and low-temperature solidification method, and then the 2nd-3rd generation BMSCs from Sprague Dawley rat were co-cultured with different concentrations (0, 0.1, 1, 5, 10, 20 μmol/L) of Res and Res-SLNs. The effects of Res and Res-SLNs on the cell viability of BMSCs were detected by cell counting kit 8 (CCK-8) and live/dead cell staining; the effects of Res and Res-SLNs on the osteogenic differentiation of BMSCs were detected by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining after osteogenic differentiation induction, and the optimal concentration of Res-SLNs for gene detection was determined. Anti-osteocalcin (OCN) immunofluorescence staining and real-time fluorescent quantitative PCR (RT-qPCR) were used to detect the effect of Res and Res-SLNs on osteoblast-related genes (ALP and OCN) of BMSCs. ResultsLive/dead cell staining showed that there was no significant difference in the number of dead cells between Res and Res-SLNs groups; CCK-8 detection showed that the activity of BMSCs in Res group was significantly reduced at the concentration of 20 μmol/L (P<0.05), while Res-SLNs activity was not affected by Res concentration (P>0.05). After osteogenic differentiation, the staining intensity of ALP and ARS in both groups was dose-dependent. The percentage of ALP positive staining area and the percentage of mineralized nodule area in Res group and Res-SLNs group reached the maximum at the concentrations of 10 μmol/L and 1 μmol/L, respectively (P<0.05), and then decreased gradually; the most effective concentration of Res-SLNs was 1 μmol/L. The expression of OCN and the relative expression of ALP and OCN mRNA in Res-SLNs group were significantly higher than those in Res group (P<0.05). ConclusionEncapsulation of SLNs can improve the effect of Res on promoting osteogenesis, and achieve the best effect of osteogenic differentiation of BMSCs at a lower concentration, which is expected to be used in the treatment of bone homeostasis imbalance diseases.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content