west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "sports medicine" 2 results
  • Recent advances in emerging three-dimensional in vitro models for sport-related traumatic brain injury

    Sports-related traumatic brain injury (srTBI) is a traumatic brain injury (TBI) caused by sports, which can result in cognitive and motor dysfunction. Currently, research on the molecular mechanism of srTBI and related drug development mainly relies on monolayer culture models and animal models. However, many differences exist in cell populations and inflammatory responses between these models and human pathophysiological processes. Most of the researches derived from the models can’t effectively conducted translational research. Emerging three-dimensional (3D) in vitro models bridge the limitations of traditional models in simulating the pathophysiological processes of human srTBI and provide new means to understand srTBI. A literature has reported the research progress of emerging 3D in vitro models in neurological diseases, but there is a lack of systematic summary of the mentioned models in srTBI studies. Here, we review the research progress of emerging 3D in vitro models of srTBI, discuss the advantages and limitations of existing models, and further prospect the future trend of srTBI models. This paper aims to provide a new research perspective for researchers in tissue engineering and sports medicine to study the molecular mechanisms of srTBI and develop neuroprotective drugs.

    Release date: Export PDF Favorites Scan
  • Research progress of magnesium and magnesium alloy implants in sports medicine

    Objective To review the research progress of magnesium and magnesium alloy implants in the repair and reconstruction of sports injury. Methods Relevant literature of magnesium and magnesium alloys for sports injury repair and reconstruction was extensively reviewed. The characteristics of magnesium and its alloys and their applications in the repair and reconstruction of sports injuries across various anatomical sites were thoroughly discussed and summarized. Results Magnesium and magnesium alloys have advantages in mechanical properties, biosafety, and promoting tendon-bone interface healing. Many preclinical studies on magnesium and magnesium alloy implants for repairing and reconstructing sports injuries have yielded promising results. However, successful clinical translation still requires addressing issues related to mechanical strength and degradation behavior, where alloying and surface treatments offer feasible solutions. Conclusion The clinical translation of magnesium and magnesium alloy implants for repairing and reconstructing sports injuries holds promise. Subsequent efforts should focus on optimizing the mechanical strength and degradation behavior of magnesium and magnesium alloy implants. Conducting larger-scale biocompatibility testing and developing novel magnesium-containing implants represent new directions for future research.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content