The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e. subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules.
Lung four dimensional computed tomography (4D-CT) can lead to accurate radiotherapy. However, for the safety of patients, the scan spacing of 4D-CT cannot be too small so that the inter-slice resolution of lung 4D-CT is low, and thus the coronal and sagittal images need to be interpolated to obtain high-resolution images. This paper presents a super-resolution reconstruction technique based on multi-model Gaussian process regression. We use the high-resolution transversal images and the corresponding low-resolution images as the training sets. The high-resolution pixels of the coronal and sagittal images can be predicted by constructing multiple Gaussian process regression models. The experimental results show that our method is superior to bicubic algorithm, projections onto convex sets, sparse coding, multi-phase similarity based method and Gaussian process regression method based on self-learning block in terms of the edge and detail recovery. The results demonstrate that the proposed method can effectively improve the quality of lung 4D-CT images, and potentially be applied to better image-guided radiation therapy of lung cancer.