Objective To summarize advances in the application of machine learning in the diagnosis and treatment of liver disease. Method The recent literatures on the progress of machine learning in the diagnosis, treatment and prognosis of liver diseases were reviewed. Results Machine learning could be used to diagnose and categorize substantial liver lesions, tumourous lesions and rare liver diseases at an early stage, which could facilitate clinicians to take timely and appropriate treatment measures. Machine learning was helpful in informing clinicians in choosing the best treatment decision, which was conducive to reducing medical risks. It could also help to determine the prognosis of patients in a comprehensive manner, and provide assistance in formulating early rehabilitation treatment plans, adjusting follow-up strategies and improving future prognosis. Conclusions Multiple types of machine learning algorithms have achieved positive results in the clinical application of liver diseases by constructing different prediction models, and have great potential and excellent prospects in multiple aspects such as diagnosis, treatment and prognosis of liver diseases.