1. |
Yanoff M, Fine BS, Brucker AJ, et al. Pathology of human cystoid macular edema[J]. Surv Ophthalmol, 1984, 28(Suppl): S505-511. DOI: 10.1016/0039-6257(84)90233-9.
|
2. |
Kohno T, Ishibashi T, Inomata H, et al. Experimental macular edema of commotio retinae: preliminary report[J]. Jpn J Ophthalmol, 1983, 27(1): 149-156.
|
3. |
Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570. DOI: 10.2337/db14-0782.
|
4. |
Radius RL, Anderson DR. Distribution of albumin in the normal monkey eye as revealed by Evans blue fluorescence microscopy[J]. Invest Ophthalmol Vis Sci, 1980, 19(3): 238-243.
|
5. |
Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1: a potential mechanism for vascular permeability in diabetic retinopathy and tumors[J]. J Biol Chem, 1999, 274(33): 23463-23467. DOI: 10.1074/jbc.274.33.23463.
|
6. |
Saker S, Stewart EA, Browning AC, et al. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells[J]. Exp Eye Res, 2014, 121: 161-167. DOI: 10.1016/j.exer.2014.02.016.
|
7. |
Stewart EA, Saker S, Amoaku WM. Dexamethasone reverses the effects of high glucose on human retinal endothelial cell permeability and proliferation in vitro[J]. Exp Eye Res, 2016, 151: 75-81. DOI: 10.1016/j.exer.2016.08.005.
|
8. |
Tien T, Barrette KF, Chronopoulos A, et al. Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6518-6525. DOI: 10.1167/iovs.13-11763.
|
9. |
Rangasamy S, Srinivasan R, Maestas J, et al. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2010, 52(6): 3784-3791. DOI: 10.1167/iovs.10-6386.
|
10. |
Aveleira CA, Lin CM, Abcouwer SF, et al. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability[J]. Diabetes, 2010, 59(11): 2872-2882. DOI: 10.2337/db09-1606.
|
11. |
Huang H, He J, Johnson D, et al. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition[J]. Diabetes, 2015, 64(1): 200-212. DOI: 10.2337/db14-0016.
|
12. |
Liu X, Dreffs A, Díaz-Coránguez M, et al. Occludin S490 phosphorylation regulates vascular endothelial growth factor-induced retinal neovascularization[J]. Am J Pathol, 2016, 186(9): 2486-2499. DOI: 10.1016/j.ajpath.2016.04.018.
|
13. |
Murakami T, Frey T, Lin C, et al. Protein kinase cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo[J]. Diabetes, 2012, 61(6): 1573-1583. DOI: 10.2337/db11-1367.
|
14. |
Scheppke L, Aguilar E, Gariano RF, et al. Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits[J]. J Clin Invest, 2008, 118(6): 2337-2346. DOI: 10.1172/JCI33361.
|
15. |
Hofman P, Blaauwgeers HG, Tolentino MJ, et al. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations[J]. Curr Eye Res, 2000, 21(2): 637-645. DOI: 10.1076/0271-3683(200008)2121-VFT637.
|
16. |
Wisniewska-Kruk J, van der Wijk AE, van Veen HA, et al. Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss[J]. Am J Pathol, 2016, 186(4): 1044-1054. DOI: 10.1016/j.ajpath.2015.11.019.
|
17. |
Gu X, Fliesler SJ, Zhao YY, et al. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration[J]. Am J Pathol, 2014, 184(2): 541-555. DOI: 10.1016/j.ajpath.2013.10.022.
|
18. |
De Bock M, Van Haver V, Vandenbroucke RE, et al. Into rather unexplored terrain-transcellular transport across the blood-brain barrier[J]. Glia, 2016, 64(7): 1097-1123. DOI: 10.1002/glia.22960.
|
19. |
Dominguez E, Raoul W, Calippe B, et al. Experimental branch retinal vein occlusion induces upstream pericyte loss and vascular destabilization[J/OL]. PLoS One, 2015, 10(7): 0132644[2015-07-24]. http://dx.plos.org/10.1371/journal.pone.0132644. DOI: 10.1371/journal.pone.0132644.
|
20. |
Joussen AM, Poulaki V, Qin W, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo[J]. Am J Pathol, 2002, 160(2): 501-509. DOI: 10.1016/S0002-9440(10)64869-9.
|
21. |
Behl Y, Krothapalli P, Desta T, et al. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy[J]. Am J Pathol, 2008, 172(5): 1411-1418. DOI: 10.2353/ajpath.2008.071070.
|
22. |
Muto T, Tien T, Kim D, et al. High glucose alters Cx43 expression and gap junction intercellular communication in retinal Müller cells: promotes Müller cell and pericyte apoptosis[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 4327-4337. DOI: 10.1167/iovs.14-14606.
|
23. |
Tonade D, Liu H, Kern TS. Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 4264-4271. DOI: 10.1167/iovs.16-19859.
|
24. |
Gorp RM, Broers JL, Reutelingsperger CP, et al. Peroxide-induced membrane blebbing in endothelial cells associated with glutathione oxidation but not apoptosis[J]. Am J Physiol, 1999, 277(1): 20-28. DOI: 10.1152/ajpcell.1999.277.1.C20.
|
25. |
Rothschild PR, Salah S, Berdugo M, et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: contribution to diabetic retinopathy[J]. Sci Rep, 2017, 7(1): 8834. DOI: 10.1038/s41598-017-07329-y.
|
26. |
Li W, Liu X, Yanoff M, et al. Cultured retinal capillary pericytes die by apoptosis after an abrupt fluctuation from high to low glucose levels: a comparative study with retinal capillary endothelial cells[J]. Diabetologia, 1996, 39(5): 537-547. DOI: 10.1007/BF00403300.
|
27. |
Shojaee N, Patton WF, Hechtman HB, et al. Myosin translocation in retinal pericytes during free-radical induced apoptosis[J]. Cell Biochem, 1999, 75(1): 118-129. DOI: 10.1002/(SICI)1097-4644(19991001)75:1<118::AID-JCB12>3.0.CO;2-U.
|
28. |
Kim YH, Kim YS, Park SY, et al. CaMKⅡ regulates pericyte loss in the retina of early diabetic mouse[J]. Mol Cells, 2011, 31(3): 289-293. DOI: 10.1007/s10059-011-0038-2.
|
29. |
Betts-Obregon BS, Mondragon AA, Mendiola AS, et al. TGFβ induces BIGH3 expression and human retinal pericyte apoptosis: a novel pathway of diabetic retinopathy[J]. Eye (Lond), 2016, 30(12): 1639-1647. DOI: 10.1038/eye.2016.179.
|
30. |
Yang R, Liu H, Williams I, et al. Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy[J]. Ann N Y Acad Sci, 2007, 1103: 196-201. DOI: 10.1196/annals.1394.000.
|
31. |
Omri S, Behar-Cohen F, Rothschild PR, et al. PKCζ mediates breakdown of outer blood-retinal barriers in diabetic retinopathy[J/OL]. PLoS One, 2013, 8(11): 81600[2013-11-29]. http://dx.plos.org/10.1371/journal.pone.0081600. DOI: 10.1371/journal.pone.0081600.
|
32. |
Xu HZ, Song Z, Fu S, et al. RPE barrier breakdown in diabetic retinopathy: seeing is believing[J]. J Ocul Biol Dis Infor, 2011, 4(1-2): 83-92. DOI: 10.1007/s12177-011-9068-4.
|
33. |
Grajewski RS, Boelke AC, Adler W, et al. Spectral-domain optical coherence tomography findings of the macula in 500 consecutive patients with uveitis[J]. Eye (Lond), 2016, 30(11): 1415-1423. DOI: 10.1038/eye.2016.133.
|
34. |
Celık E, Doğan E, Turkoglu EB, et al. Serous retinal detachment in patients with macular edema secondary to branch retinal vein occlusion[J]. Arq Bras Oftalmol, 2016, 79(1): 9-11. DOI: 10.5935/0004-2749.20160004.
|
35. |
Shereef H, Comyn O, Sivaprasad S, et al. Differences in the topographic profiles of retinal thickening in eyes with and without serous macular detachment associated with diabetic macular oedema[J]. Br J Ophthalmol, 2014, 98(2): 182-187. DOI: 10.1136/bjophthalmol-2013-303095.
|
36. |
Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphological and functional entities[J]. Am J Ophthalmol, 2017, 181: 149-155. DOI: 10.1016/j.ajo.2017.06.026.
|
37. |
van Zeeburg EJ, Maaijwee KJ, Missotten TO, et al. A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years[J]. Am J Ophthalmol, 2011, 153(1): 120-127. DOI: 10.1016/j.ajo.2011.06.007.
|
38. |
Dunaief JL, Dentchev T, Ying GS, et al. The role of apoptosis in age-related macular degeneration[J]. Arch Ophthalmol, 2002, 120(11): 1435-1442. DOI: 10.1001/archopht.120.11.1435.
|
39. |
Kaneko H, Dridi S, Tarallo V, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration[J]. Nature, 2011, 471(7338): 325-330. DOI: 10.1038/nature09830.
|
40. |
Kim SY, Sadda S, Humayun MS, et al. Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration[J]. Retina, 2002, 22(4): 464-470. DOI: 10.1097/00006982-200208000-00011.
|
41. |
Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis[J]. Prog Retin Eye Res, 2015, 48: 82-118. DOI: 10.1016/j.preteyeres.2015.05.003.
|
42. |
Spaide RF, Ryan EH. Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy[J]. Am J Ophthalmol, 2015, 160(6): 1211-1216. DOI: 10.1016/j.ajo.2015.08.018.
|
43. |
Ito S, Miyamoto N, Ishida K, et al. Association between external limiting membrane status and visual acuity in diabetic macular oedema[J]. Br J Ophthalmol, 2013, 97(2): 228-232. DOI: 10.1136/bjophthalmol-2011-301418.
|
44. |
Murakami T, Okamoto F, Iida M, et al. Relationship between metamorphopsia and foveal microstructure in patients with branch retinal vein occlusion and cystoid macular edema[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 254(11): 2191-2196. DOI: 10.1007/s00417-016-3382-2.
|
45. |
Zandi S, Weisskopf F, Garweg JG, et al. Preexisting RPE atrophy and defects in the external limiting membrane predict early poor visual response to ranibizumab in neovascular age-related macular degeneration[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 326-332. DOI: 10.3928/23258160-20170329-07.
|
46. |
Chatziralli I, Theodossiadis G, Chatzirallis A, et al. Ranibizumab for retinal vein occlusion: predictive factors and long-term outcomes in real-life data[J]. Retina, 2018, 38(3): 559-568. DOI: 10.1097/IAE.0000000000001579.
|
47. |
Muftuoglu IK, Mendoza N, Gaber R, et al. Integrity of outer retinal layers after resolution of central involved diabetic macular edema[J]. Retina, 2017, 37(11): 2015-2024. DOI: 10.1097/IAE.0000000000001459.
|
48. |
Goldman D. Müller glia cell reprogramming and retina regeneration[J]. Nat Rev Neurosci, 2014, 15(7): 431-442. DOI: 10.1038/nrn3723.
|
49. |
Hamon A, Roger JE, Yang XJ, et al. Müller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems[J]. Dev Dyn, 2016, 245(7): 727-738. DOI: 10.1002/dvdy.24375.
|
50. |
Bringmann A, Wiedemann P. Müller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227(1): 1-19. DOI: 10.1159/000328979.
|
51. |
Reichenbach A, Wurm A, Pannicke T, et al. Müller cells as players in retinal degeneration and edema[J]. Graefe’s Arch Clin Exp Ophthalmol, 2007, 245(5): 627-636. DOI: 10.1007/s00417-006-0516-y.
|
52. |
Fletcher EL, Phipps JA, Ward MM, et al. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy[J]. Curr Pharm Des, 2007, 13(26): 2699-2712. DOI: 10.2174/138161207781662920.
|
53. |
Lassiale S, Valamanesh F, Klein C, et al. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy[J]. Exp Eye Res, 2016, 148: 33-44. DOI: 10.1016/j.exer.2016.05.010.
|
54. |
Feng J, Zhao T, Zhang Y, et al. Differences in aqueous concentrations of cytokines in macular edema secondary to branch and central retinal vein occlusion[J/OL]. PLoS One, 2013, 8(7): 68149[2013-07-05]. http://europepmc.org/article/MED/23861862. DOI: 10.1371/journal.pone.0068149.
|
55. |
Citi S, Guerrera D, Spadaro D, et al. Epithelial junctions and Rho family GTPases: the zonular signalosome[J]. Small GTPases, 2014, 5(4): 1-15. DOI: 10.4161/21541248.2014.973760.
|
56. |
Schevzov JG, Kee AJ, Wang B, et al. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments[J]. Mol Biol Cell, 2015, 26(13): 2475-2490. DOI: 10.1091/mbc.E14-10-1453.
|
57. |
Urner-Bloch U, Urner M, Stieger P, et al. Transient MEK inhibitor-associated retinopathy in metastatic melanoma[J]. Ann Oncol, 2014, 25(7): 1437-1441. DOI: 10.1093/annonc/mdu169.
|
58. |
Zheng Y, Bando H, Ikuno Y, et al. Involvement of Rho-kinase pathway in contractile activity of rabbit RPE cells in vivo and in vitro[J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 668-674. DOI: 10.1167/iovs.02-0808.
|
59. |
Tran TL, Bek T, la Cour M, et al. Aquaporin-1 expression in retinal pigment epithelial cells overlying retinal drusen[J]. Ophthalmic Res, 2016, 55(4): 180-184. DOI: 10.1159/000443207.
|
60. |
Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space[J]. Exp Eye Res, 1985, 40(5): 687-696. DOI: 10.1016/0014-4835(85)90138-1.
|
61. |
Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
|