1. |
Seki M, Lipton SA. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma[J]. Prog Brain Res, 2008, 173: 495-510. DOI: 10.1016/S0079-6123(08)01134-5.
|
2. |
Uhlemann AC, Krishna S. Antimalarial multi-drug resistance in Asia: mechanisms and assessment[J]. Curr Top Microbiol Immunol, 2005, 295: 39-53.
|
3. |
Yuyama K, Yamamoto N, Yanagisawa K. Chloroquine-induced endocytic pathway abnormalities: cellular model of GM1 ganglioside-induced Abeta fibrillogenesis in Alzheimer's disease[J]. FEBS Lett, 2006, 580(30): 6972-6976. DOI: 10.1016/j.febslet.2006.11.072.
|
4. |
Caughlin S, Hepburn J, Liu Q, et al. Chloroquine restores ganglioside homeostasis and improves pathological and behavioral outcomes post-stroke in the rat[J]. Mol Neurobiol, 2019, 56(5): 3552-3562. DOI: 10.1007/s12035-018-1317-0.
|
5. |
Biraboneye AC, Madonna S, Laras Y, et al. Potential neuroprotective drugs in cerebral ischemia: new saturated and polyunsaturated lipids coupled to hydrophilic moieties: synthesis and biological activity[J]. J Med Chem, 2009, 52(14): 4358-4369. DOI: 10.1021/jm900227u.
|
6. |
Gaynes BI, Torczynski E, Varro Z, et al. Retinal toxicity of chloroquine hydrochloride administered by intraperitoneal injection[J]. J Appl Toxicol, 2008, 28(7): 895-900. DOI: 10.1002/jat.1353.
|
7. |
Costedoat-Chalumeau N, Dunogue B, Leroux G, et al. A critical review of the effects of hydroxychloroquine and chloroquine on the eye[J]. Clin Rev Allergy Immunol, 2015, 49(3): 317-326. DOI: 10.1007/s12016-015-8469-8.
|
8. |
Bonanomi MT, Dantas NC, Medeiros FA. Retinal nerve fibre layer thickness measurements in patients using chloroquine[J]. Clin Exp Ophthalmol, 2006, 34(2): 130-136. DOI: 10.1111/j.1442-9071.2006.01167.x.
|
9. |
Li X, Fei J, Lei Z, et al. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a[J]. Toxicol Lett, 2014, 228(3): 200-206. DOI: 10.1016/j.toxlet.2014.05.008.
|
10. |
刘诗亮, 陈媛媛, 胡单萍, 等. N-甲基-D-天冬氨酸诱导的正常眼压青光眼小鼠模型的实验研究[J]. 武汉大学学报(医学版), 2014, 35(5): 710-715.Liu SL, Chen YY, Hu SP, et al. Experimental study of normal-tension glaucoma mouse model induced by N-methyl-D-aspartate[J]. Medical Journal of Wuhan University, 2014, 35(5): 710-715.
|
11. |
Galindo-Romero C, Valiente-Soriano FJ, Jimenez-Lopez M, et al. Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia[J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 974-985. DOI: 10.1167/iovs.12-11207.
|
12. |
Prusky GT, Alam NM, Douglas RM. Enhancement of vision by monocular deprivation in adult mice[J]. J Neurosci,, 2006, 26(45): 11554-11561. DOI: 10.1523/JNEUROSCI.3396-06.2006.
|
13. |
Connor KM, Krah NM, Dennison RJ, et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis[J]. Nat Protoc, 2009, 4(11): 1565-1573. DOI: 10.1038/nprot.2009.187.
|
14. |
Savarino A, Lucia MB, Giordano F, et al. Risks and benefits of chloroquine use in anticancer strategies[J]. Lancet Oncol, 2006, 7(10): 792-793. DOI: 10.1016/S1470-2045(06)70875-0.
|
15. |
Easterbrook M. Ocular effects and safety of antimalarial agents[J]. Am J Med, 1988, 85(4A): 23-29. DOI: 10.1016/0002-9343(88)90358-0.
|
16. |
Lyons JS, Severns ML. Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography[J]. Am J Ophthalmol, 2007, 143(5): 801-809. DOI: 10.1016/j.ajo.2006.12.042.
|
17. |
Zhao C, Lu S, Tajouri N, et al. In vivo confocal laser scanning microscopy of corneal nerves in leprosy[J]. Arch Ophthalmol, 2008, 126(2): 282-284. DOI: 10.1001/archophthalmol.2007.67.
|
18. |
Hirata Y, Yamamoto H, Atta MS, et al. Chloroquine inhibits glutamate-induced death of a neuronal cell line by reducing reactive oxygen species through sigma-1 receptor[J]. J Neurochem, 2011, 119(4): 839-847. DOI: 10.1111/j.1471-4159.2011.07464.x.
|
19. |
Lam TT, Abler AS, Kwong JM, et al. N-methyl-D-aspartate (NMDA)--induced apoptosis in rat retina[J]. Invest Ophthalmol Vis Sci, 1999, 40(10): 2391-2397.
|
20. |
Schluter A, Aksan B, Fioravanti R, et al. Histone deacetylases contribute to excitotoxicity- triggered degeneration of retinal ganglion cells in vivo[J]. Mol Neurobiol, 2019, 56(12): 8018-8034. DOI: 10.1007/s12035-019-01658-x.
|
21. |
Lambuk L, Iezhitsa I, Agarwal R, et al. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats[J]. Neurotoxicology, 2019, 70: 62-71. DOI: 10.1016/j.neuro.2018.10.009.
|
22. |
Bosco A, Breen KT, Anderson SR, et al. Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma[J]. Exp Eye Res, 2016, 150: 34-43. DOI: 10.1016/j.exer.2016.01.014.
|
23. |
Bringmann A, Pannicke T, Grosche J, et al. Muller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003.
|
24. |
Tezel G, Chauhan BC, LeBlanc RP, et al. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma[J]. Invest Ophthalmol Vis Sci, 2003, 44(7): 3025-3033. DOI: 10.1167/iovs.02-1136.
|
25. |
Lam TT, Kwong JM, Tso MO. Early glial responses after acute elevated intraocular pressure in rats[J]. Invest Ophthalmol Vis Sci, 2003, 44(2): 638-645. DOI: 10.1167/iovs.02-0255.
|
26. |
Lin M, Chen Y, Jin J, et al. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Muller cells[J]. Diabetologia, 2011, 54(6): 1554-1566. DOI: 10.1007/s00125-011-2081-0.
|
27. |
Shivakumar S, Panigrahi T, Shetty R, et al. Chloroquine protects human corneal epithelial cells from desiccation stress induced inflammation without altering the autophagy flux[J/OL]. Biomed Res Int, 2018, 2018: 7627329[2018-11-01].https://doi.org/10.1155/2018/7627329. DOI:10.1155/2018/7627329.
|
28. |
Jain V, Ravindran E, Dhingra NK. Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse[J]. J Comp Neurol, 2012, 520(4): 742-755. DOI: 10.1002/cne.22765.
|
29. |
Viswanathan S, Frishman LJ, Robson JG, et al. The photopic negative response of the flash electroretinogram in primary open angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2001, 42(2): 514-522.
|
30. |
Li B, Barnes GE, Holt WF. The decline of the photopic negative response (PhNR) in the rat after optic nerve transection[J]. Doc Ophthalmol, 2005, 111(1): 23-31. DOI: 10.1007/s10633-005-2629-8.
|
31. |
Chrysostomou V, Crowston JG. The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4691-4697. DOI: 10.1167/iovs.13-12415.
|
32. |
Burroughs SL, Kaja S, Koulen P. Quantification of deficits in spatial visual function of mouse models for glaucoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3654-3659. DOI: 10.1167/iovs.10-7106.
|