1. |
Dong L, Nian H, Shao Y, et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy[J]. Cell Tissue Res, 2015, 360(2): 233-243. DOI: 10.1007/s00441-014-2104-5.
|
2. |
Li W, Dong L, Ma M, et al. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration[J]. Drug Des Devel Ther, 2016, 10: 3415-3423. DOI: 10.2147/DDDT.S115801.
|
3. |
Shao Y, Dong LJ, Takahashi Y, et al. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy[J]. Am J Physiol Endocrinol Metab, 2019, 316(3): 443-452. DOI: 10.1152/ajpendo.00360.2018.
|
4. |
Li WB, Ma MW, Dong LJ, et al. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme[J]. Cancer Biol Ther, 2011, 12(6): 477-483. DOI: 10.4161/cbt.12.6.16300.
|
5. |
Wang P, Luo Y, Duan H, et al. MicroRNA 329 suppresses angiogenesis by targeting CD146[J]. Mol Cell Biol, 2013, 33(18): 3689-3699. DOI: 10.1128/MCB.00343-13.
|
6. |
刘勃实, 东莉洁, 李筱荣, 等. 慢病毒介导的微小RNA-191对小鼠视网膜新生血管的抑制作用[J]. 中华眼底病杂志, 2019, 35(5): 475-479. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.010.Liu BS, Dong LJ, Li XR, et al. miR-191 inhibits oxygen-induced retinal neovascularization in mice[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 475-479. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.010.
|
7. |
Wang XH, Chen L. MicroRNA-370 suppresses the retinal capillary endothelial cell growth by targeting KDR gene[J]. Bratisl Lek Listy, 2017, 118(4): 202-207. DOI: 10.4149/BLL_2017_040.
|
8. |
田芳, 东莉洁, 周玉, 等. 重组腺相关病毒-多聚嘧啶序列结合蛋白相关剪接因子对氧诱导视网膜新生血管形成的抑制作用[J]. 中华眼底病杂志, 2014, 30(5): 504-508. DOI: 10.3760/cma.j.issn.1005-1015.2014.05.019.Tian F, Dong LJ, Zhou Y, et al. Inhibition of oxygen induced retinal neovascularization by recombinant adeno-associated virus-polypyrimidine tract-binding protein-associated splicing factor intraocular injection in mice[J]. Chin J Ocul Fundus Dis, 2014, 30(5): 504-508. DOI: 10.3760/cma.j.issn.1005-1015.2014.05.019.
|
9. |
Xing XL, Huang LY, Lv YJ, et al. DL-3-n-butylphthalide protected retinal Müller cells dysfunction from oxidative stress[J]. Curr Eye Res, 2019, 44(10): 1112-1120. DOI: 10.1080/02713683.2019.1624777.
|
10. |
田芳, 胡博杰, 李文博, 等. 高表达多聚嘧啶序列结合蛋白相关剪接因子对糖基化终产物诱导下视网膜Müller细胞凋亡的影响[J]. 中华眼底病杂志, 2019, 35(1): 70-75. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.015.Tian F, Hu BJ, Li WB, et al. Effects of polypyramidine tract binding protein-associated splicing factor overexpression on apoptosis of human Müller cells under advanced glycation end products treatment[J]. Chin J Ocul Fundus Dis, 2019, 35(1): 70-75. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.015.
|
11. |
邢小丽, 黄亮瑜, 苏睿虹, 等. 丁基苯酞对过氧化氢诱导下视网膜Müller细胞凋亡的影响[J]. 中华眼底病杂志, 2018, 34(5): 481-486. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.014.Xing XL, Huang LY, Su RH, et al. Effect of dl-3-n-butylphthalide on apoptosis of retinal Müller cells induced by hydrogen peroxide[J]. Chin J Ocul Fundus Dis, 2018, 34(5): 481-486. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.014.
|
12. |
邢小丽, 黄亮瑜, 张哲, 等. 丁基苯酞对H2O2诱导下视网膜色素上皮细胞凋亡的保护作用[J]. 中华眼底病杂志, 2019, 35(5): 485-492. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.Xing XL, Huang LY, Zhang Z, et al. Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 485-492. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.
|
13. |
漆晨, 东莉洁, 乐毅, 等. 多聚嘧啶序列结合蛋白相关剪接因子对体外培养的视网膜色素上皮细胞磷脂酰肌醇3激酶/丝氨酸-苏氨酸蛋白激酶信号通路的调控作用[J]. 中华眼底病杂志, 2015(4): 363-367. DOI: 10.3760/cma.j.issn.1005-1015.2015.04.013.Qi C, Dong LJ, Yue Y, et al. The regulation of PTB-associated splicing factor on phosphatidylinositol 3 kinase/Akt signaling pathway in retinal pigment epithelial cells[J]. Chin J Ocul Fundus Dis, 2015(4): 363-367. DOI: 10.3760/cma.j.issn.1005-1015.2015.04.013.
|
14. |
田芳, 李文博, 黄亮瑜, 等. 聚嘧啶束结合蛋白相关剪接因子对过氧化氢诱导下视网膜色素上皮细胞凋亡的影响[J]. 中华眼底病杂志, 2018, 34(2): 159-163. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.012.Tian F, Li WB, Huang LY, et al. The effect of polypyrimidine tract binding protein-associated splicing factor on hydrogen peroxide induced apoptosis of retinal pigment epithelial[J]. Chin J Ocul Fundus Dis, 2018, 34(2): 159-163. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.012.
|
15. |
田芳, 东莉洁, 吉洁, 等. 多聚嘧啶序列结合蛋白相关剪接因子对视网膜血管内皮细胞IGF-1/VEGF信号通路的抑制作用[J]. 中华实验眼科杂志, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.Tian F, Dong LJ, Ji J, et al. Inhibition of PTB-associated splicing factor on IGF-1/VEGF signaling pathway in retinal vascular endothelial cells[J]. Chin J Exp Ophthalmol, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.
|
16. |
张哲, 刘竹青, 刘巨平, 等. 二甲双胍联合抗血管内皮生长因子药物治疗糖尿病视网膜病变的可能协同作用[J]. 中华眼底病杂志, 2018, 34(5): 453-457. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.008.Zhang Z, Liu ZQ, Liu JP, et al. The synergistic effect of metformin and anti-vascular endothelial growth factor in the treatment of diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2018, 34(5): 453-457. DOI: 10.3760/cma.j.issn.1005-1015.2018.05.008.
|
17. |
牛瑞, 东莉洁, 马腾, 等. 结缔组织生长因子重组干扰载体慢病毒颗粒的构建及其对视网膜血管内皮细胞内源性结缔组织生长因子表达的抑制作用[J]. 中华眼底病杂志, 2018, 34(6): 580-585. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.011.Niu R, Dong LJ, Ma T, et al. Construction of connective tissue growth factor recombinant interference vector lentiviral particle and its inhibitory effect on endogenous connective tissue growth factor expression in retinal vascular endothelial cells[J]. Chin J Ocul Fundus Dis, 2018, 34(6): 580-585. DOI: 10.3760/cma.j.issn.1005-1015.2018.06.011.
|
18. |
张哲, 刘巨平, 东莉洁, 等. 高糖状态下视网膜血管内皮细胞基因表达谱的RNA-Seq分析[J]. 中华眼底病杂志, 2018, 34(4): 377-381. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.014.Zhang Z, Liu JP, Dong LJ, et al. RNA-Seq analysis of gene expression profiling in retinal vascular endothelial cells under high glucose condition[J]. Chin J Ocul Fundus Dis, 2018, 34(4): 377-381. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.014.
|
19. |
牛瑞, 东莉洁, 马腾, 等. 抗血管内皮生长因子药物治疗后视网膜血管内皮细胞基因表达谱的RNA-Seq分析[J]. 中华眼底病杂志, 2018, 34(3): 275-280. DOI: 10.3760/cma.j.issn.1005-1015.2018.03.016.Niu R, Dong LJ, Ma T, et al. RNA-Seq analysis of gene expression profiling in human retinal vascular endothelial cells after anti-vascular endothecial growth factor treatment[J]. Chin J Ocul Fundus Dis, 2018, 34(3): 275-280. DOI: 10.3760/cma.j.issn.1005-1015.2018.03.016.
|
20. |
王礼明, 东莉洁, 刘勋, 等. 急性原发闭角型青光眼急性发作期房水蛋白质组学分析[J]. 中华眼科杂志, 2019, 55(9): 687-694. DOI: 10.3760/cma.j.issn.0412-4081.Wang LM, Dong LJ, Liu X, et al. Proteomic analysis of aqueous humor in acute primary angle-closure glaucoma[J]. Chin J Ophthalmol, 2019, 55(9): 687-694. DOI: 10.3760/cma.j.issn.0412-4081.
|
21. |
温德佳, 任新军, 东莉洁, 等. 应用iTRAQ 蛋白组技术筛选增生性糖尿病视网膜病变防治靶点的研究[J]. 中华眼科杂志, 2019, 55(10): 769-776. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.008.Wen DJ, Ren XJ, Dong LJ, et al. New exploration of treatment target for proliferative diabetic retinopathy based on iTRAQ LC-MS/MS proteomics[J]. Chin J Ophthalmol, 2019, 55(10): 769-776. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.008.
|
22. |
van Mil A, Grundmann S, Goumans MJ, et al. MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release[J]. Cardiovasc Res, 2012, 93(4): 655-665. DOI: 10.1093/cvr/cvs003.
|
23. |
Zhang Y, Cai S, Jia Y, et al. Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization[J]. Theranostics, 2017, 7(12): 3155-3167. DOI: 10.7150/thno.19646.
|
24. |
Chen XK, Ouyang LJ, Yin ZQ, et al. Effects of microRNA-29a on retinopathy of prematurity by targeting AGT in a mouse model[J]. Am J Transl Res, 2017, 9(2): 791-801.
|
25. |
Liu CH, Sun Y, Li J, et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization[J]. Proc Natl Acad Sci USA, 2015, 112(39): 12163-12168. DOI: 10.1073/pnas.1508426112.
|
26. |
Gu Y, Ampofo E, Menger MD, et al. miR-191 suppresses angiogenesis by activation of NF-kB signaling[J]. FASEB, 2017, 31(8): 3321-3333. DOI: 10.1096/fj.201601263R.
|
27. |
Seo HH, Lee SY, Lee CY, et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart[J]. J Vasc Res, 2017, 54(2): 100-108. DOI: 10.1159/000461596.
|
28. |
Lee SH, Jung YD, Choi YS, et al. Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells[J]. Oncotarget, 2015, 6(32): 33269-33278. DOI: 10.18632/oncotarget.5037.
|
29. |
Liu CH, Wang Z, Sun Y, et al. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy[J/OL]. Sci Rep, 2016, 6: 33947[2016-09-22]. https://www.nature.com/articles/srep33947. DOI:10.1038/srep33947.
|
30. |
Shen J, Yang X, Xie B, et al. MicroRNAs regulate ocular neovascularization[J]. Mol Ther, 2008, 16(7): 1208-1216. DOI: 10.1038/mt.2008.104.
|
31. |
Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis[J]. Clin Cancer Res, 2017, 23(5): 1323-1333. DOI: 10.1158/1078-0432.CCR-16-0497.
|
32. |
Song WY, Meng H, Wang XG, et al. Reduced microRNA-188-3p expression contributes to apoptosis of spermatogenic cells in patients with azoospermia[J/OL]. Cell Prolif, 2017, 50(1): 12297[2016-11-21].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529064/. DOI:10.1111/cpr.12297.
|
33. |
Da Silva W, Dos Santos RA, Moraes KC. Mir-351-5p contributes to the establishment of a pro-inflammatory environment in the H9c2 cell line by repressing PTEN expression[J]. Mol Cell Biochem, 2016, 411(1-2): 363-371. DOI: 10.1007/s11010-015-2598-5.
|
34. |
Yadav SK, Pandey A, Kumar L, et al. The thermo-sensitive gene expression signatures of spermatogenesis[J]. Reprod Biol Endocrinol, 2018, 16(1): 56. DOI: 10.1186/s12958-018-0372-8.
|
35. |
Diao Y, Jin B, Huang L, et al. MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2[J]. J Cell Mol Med, 2018, 22(4): 2357-2367. DOI: 10.1111/jcmm.13529.
|
36. |
Long J, Menggen Q, Wuren Q, et al. Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma[J]. Med Sci Monit, 2018, 24: 1547-1559. DOI: 10.12659/msm.906616.
|
37. |
Liu ML, Chen XL, Liu HN, et al. Expression and significance of the Hedgehog signal transduction pathway in oxygen-induced retinal neovascularization in mice[J]. Drug Des Devel Ther, 2018, 12: 1337-1346. DOI: 10.2147/DDDT.S149594.
|
38. |
Yu J, Feng Y, Wang Y, et al. Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress in prostate cancer progression by regulating MAP3K12[J]. Arch Biochem Biophys, 2018, 654: 47-54. DOI: 10.1016/j.abb.2018.07.010.
|