1. |
Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy[J]. Nature, 2004, 429(6990): 457-463. DOI: 10.1038/nature02625.
|
2. |
Portela A, Esteller M. Epigenetic modifications and human disease[J]. Nat Biotechnol, 2010, 28(10): 1057-1068. DOI: 10.1038/nbt.1685.
|
3. |
Elmasry K, Mohamed R, Sharma I, et al. Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration[J]. Oncotarget, 2018, 9(16): 12562-12590. DOI: 10.18632/oncotarget.24333.
|
4. |
Kowluru RA, Mishra M. Contribution of epigenetics in diabetic retinopathy[J]. Sci China Life Sci, 2015, 58(6): 556-563. DOI: 10.1007/s11427-015-4853-0.
|
5. |
Gemenetzi M, Lotery AJ. Epigenetics in age-related macular degeneration: new discoveries and future perspectives[J]. Cell Mol Life Sci, 2020, 77(5): 807-818. DOI: 10.1007/s00018-019-03421-w.
|
6. |
Edwards JR, Yarychkivska O, Boulard M, et al. DNA methylation and DNA methyltransferases[J/OL]. Epigenetics Chromatin, 2017, 10: 23[2017-05-08]. https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-017-0130-8. DOI: 10.1186/s13072-017-0130-8.
|
7. |
Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1): 6-21. DOI: 10.1101/gad.947102.
|
8. |
Kinney SR, Pradhan S. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer[J]. Adv Exp Med Biol, 2013, 754: 57-79. DOI: 10.1007/978-1-4419-9967-2_3.
|
9. |
Branco MR, Ficz G, Reik W, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. DOI: 10.1126/science.1170116.
|
10. |
Corso-Díaz X, Jaeger C, Chaitankar V, et al. Epigenetic control of gene regulation during development and disease: a view from the retina[J]. Prog Retin Eye Res, 2018, 65: 1-27. DOI: 10.1016/j.preteyeres.2018.03.002.
|
11. |
Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080. DOI: 10.1126/science.1063127.
|
12. |
Shechter D, Dormann HL, Allis CD, et al. Extraction, purification and analysis of histones[J]. Nat Protoc, 2007, 2(6): 1445-1457. DOI: 10.1038/nprot.2007.202.
|
13. |
Furumatsu T, Ozaki T. Epigenetic regulation in chondrogenesis[J]. Acta Med Okayama, 2010, 64(3): 155-161. DOI: 10.18926/AMO/40007.
|
14. |
Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4): 693-705. DOI: 10.1016/j.cell.2007.02.005.
|
15. |
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94. DOI: 10.1016/j.cell.2014.03.008.
|
16. |
Han J, Kim D, Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells[J]. Proc Natl Acad Sci USA, 2007, 104(30): 12422-12427. DOI: 10.1073/pnas.0701635104.
|
17. |
Kawasaki H, Taira K, Morris KV. siRNA induced transcriptional gene silencing in mammalian cells[J]. Cell Cycle, 2005, 4(3): 442-448. DOI: 10.4161/cc.4.3.1520.
|
18. |
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. DOI: 10.1016/j.cell.2004.12.035.
|
19. |
Kasper DM, Gardner KE, Reinke V. Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs[J]. Epigenetics, 2014, 9(1): 62-74. DOI: 10.4161/epi.26647.
|
20. |
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. DOI: 10.1016/j.cell.2018.01.011.
|
21. |
Kowluru RA. Diabetic retinopathy, metabolic memory and epigenetic modifications[J]. Vision Res, 2017, 139: 30-38. DOI: 10.1016/j.visres.2017.02.011.
|
22. |
Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy[J]. Prog Retin Eye Res, 2015, 48: 40-61. DOI: 10.1016/j.preteyeres.2015.05.001.
|
23. |
Kowluru RA. Mitochondrial stability in diabetic retinopathy: lessons learned from epigenetics[J]. Diabetes, 2019, 68(2): 241-247. DOI: 10.2337/dbi18-0016.
|
24. |
Oliver VF, Jaffe AE, Song J, et al. Differential DNA methylation identified in the blood and retina of AMD patients[J]. Epigenetics, 2015, 10(8): 698-707. DOI: 10.1080/15592294.2015.1060388.
|
25. |
Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy[J/OL]. Biosci Rep, 2017, 37(6): BSR20171157[2017-11-29]. http://europepmc.org/article/MED/29074557. DOI: 10.1042/BSR20171157.
|
26. |
Desmettre TJ. Epigenetics in age-related macular degeneration (AMD)[J]. J Fr Ophtalmol, 2018, 41(9): 407-415. DOI: 10.1016/j.jfo.2018.09.001.
|
27. |
Hunter A, Spechler PA, Cwanger A, et al. DNA methylation is associated with altered gene expression in AMD[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2089-2105. DOI: 10.1167/iovs.11-8449.
|
28. |
Villagra A, Sotomayor EM, Seto E. Histone deacetylases and the immunological network: implications in cancer and inflammation[J]. Oncogene, 2010, 29(2): 157-173. DOI: 10.1038/onc.2009.334.
|
29. |
Wei L, Liu B, Tuo J, et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration[J]. Cell Rep, 2012, 2(5): 1151-1158. DOI: 10.1016/j.celrep.2012.10.013.
|
30. |
Zhou Q, Gallagher R, Ufret-Vincenty R, et al. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters[J]. Proc Natl Acad Sci USA, 2011, 108(20): 8287-8292. DOI: 10.1073/pnas.1105254108.
|
31. |
Natoli R, Fernando N. MicroRNA as therapeutics for age-related macular degeneration[J]. Adv Exp Med Biol, 2018, 1074: 37-43. DOI: 10.1007/978-3-319-75402-4_5.
|
32. |
Hatada I, Horii T. CRISPR/Cas9[J]. Methods Mol Biol, 2017, 1630: 37-42. DOI: 10.1007/978-1-4939-7128-2_3.
|