1. |
Kumaran N, Moore AT, Weleber RG, et al. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions[J]. Br J Ophthalmol, 2017, 101(9): 1147-1154. DOI: 10.1136/bjophthalmol-2016-309975.
|
2. |
Xu K, Xie Y, Sun T, et al. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy[J]. Br J Ophthalmol, 2020, 104(7): 932-937. DOI: 10.1136/bjophthalmol-2019-314281.
|
3. |
唐贺, 彭海鹰, 史平玲, 等. RPGRIP1基因新突变致Leber先天性黑矇一家系[J]. 中华眼底病杂志, 2020, 36(3): 196-199. DOI: 10.3760/cma.j.cn511434-20191008-00315.Tang H, Peng HY, Shi PL, et al. Novel mutations of RPGRIP1 gene in a family with Leber congenital amaurosis[J]. Chin J Ocul Fundus Dis, 2020, 36(3): 196-199. DOI: 10.3760/cma.j.cn511434-20191008-00315.
|
4. |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
|
5. |
Mukhopadhyay S, Jackson PK. The tubby family proteins[J/OL]. Genome Biol, 2011, 12(6): 225[2011-06-28]. https://pubmed.ncbi.nlm.nih.gov/21722349/. DOI: 10.1186/gb-2011-12-6-225.
|
6. |
Grossman GH, Pauer GJ, Narendra U, et al. Early synaptic defects in tulp1-/- mice[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3074-3083. DOI: 10.1167/iovs.08-3190.
|
7. |
Hagstrom SA, Adamian M, Scimeca M, et al. A role for the Tubby-like protein 1 in rhodopsin transport[J]. Invest Ophthalmol Vis Sci, 2001, 42(9): 1955-1962.
|
8. |
Hagstrom SA, Watson RF, Pauer GJ, et al. TULP1 is involved in specific photoreceptor protein transport pathways[J]. Adv Exp Med Biol, 2012, 723: 783-789. DOI: 10.1007/978-1-4614-0631-0_100.
|
9. |
Grossman GH, Watson RF, Pauer GJ, et al. Immunocytochemical evidence of Tulp1-dependent outer segment protein transport pathways in photoreceptor cells[J]. Exp Eye Res, 2011, 93(5): 658-668. DOI: 10.1016/j.exer.2011.08.005.
|
10. |
Wahl S, Magupalli VG, Dembla M, et al. The disease protein TULP1 is essential for periactive zone endocytosis in photoreceptor ribbon synapses[J]. J Neurosci, 2016, 36(8): 2473-2493. DOI: 10.1523/JNEUROSCI.2275-15.2016.
|
11. |
Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis[J]. Hum Mutat, 2004, 23(4): 306-317. DOI: 10.1002/humu.20010.
|
12. |
Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing[J]. J Med Genet, 2013, 50(10): 674-688. DOI: 10.1136/jmedgenet-2013-101558.
|
13. |
den Hollander AI, Lopez I, Yzer S, et al. Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays[J]. Invest Ophthalmol Vis Sci, 2007, 48(12): 5690-5698. DOI: 10.1167/iovs.07-0610.
|
14. |
den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms[J]. Prog Ret Eye Res, 2008, 27(4): 391-419. DOI: 10.1016/j.preteyeres.2008.05.003.
|
15. |
Kondo H, Qin M, Mizota A, et al. A homozygosity-based search for mutations in patients with autosomal recessive retinitis pigmentosa, using microsatellite markers[J]. Invest Ophthalmol Vis Sci, 2004, 45(12): 4433-4439. DOI: 10.1167/iovs.04-0544.
|
16. |
Colville CA, Molday RS. Primary structure and expression of the human beta-subunit and related proteins of the rod photoreceptor cGMP-gated channel[J]. J Biol Chem, 1996, 271(51): 32968-32974. DOI: 10.1074/jbc.271.51.32968.
|
17. |
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models[J]. Prog Retin Eye Res, 2012, 31(5): 442-466. DOI: 10.1016/j.preteyeres.2012.05.002.
|
18. |
Pentia DC, Hosier S, Cote RH. The glutamic acid-rich protein-2(GARP2) is a high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that modulates its catalytic properties[J]. J Biol Chem, 2006, 281(9): 5500-5505. DOI: 10.1074/jbc.M507488200.
|
19. |
Poetsch A, Molday LL, Molday RS. The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes[J]. J Biol Chem, 2001, 276(51): 48009-48016. DOI: 10.1074/jbc.M108941200.
|
20. |
Bareil C, Hamel CP, Delague V, et al. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa[J]. Hum Genet, 2001, 108(4): 328-334. DOI: 10.1007/s004390100496.
|
21. |
Maranhao B, Biswas P, Gottsch AD, et al. Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani descent by exome sequencing[J/OL]. PLoS One, 2015, 10(9): e0136561[2015-09-09]. https://pubmed.ncbi.nlm.nih.gov/26352687/. DOI: 10.1371/journal.pone.0136561.
|