1. |
Country MW. Retinal metabolism: a comparative look at energetics in the retina[J]. Brain Res, 2017, 1672: 50-57. DOI: 10.1016/j.brainres.2017.07.025.
|
2. |
Smith GG, Baird CD. Survival time of retinal cells when deprived of their blood supply by increased intraocular pressure[J]. Am J Ophthalmol, 1952, 35(5): 133-136. DOI: 10.1016/0002-9394(52)90266-3.
|
3. |
Büchi ER, Suivaizdis I, Fu J. Pressure-induced retinal ischemia in rats: an experimental model for quantitative study[J]. Ophthalmologica, 1991, 203(3): 138-147. DOI: 10.1159/000310240.
|
4. |
Ettaiche M, Heurteaux C, Blondeau N, et al. ATP-sensitive potassium channels (K(ATP)) in retina: a key role for delayed ischemic tolerance[J]. Brain Res, 2001, 890(1): 118-129. DOI: 10.1016/s0006-8993(00)03152-8.
|
5. |
Safa R, Osborne NN. Retinas from albino rats are more susceptible to ischaemic damage than age-matched pigmented animals[J]. Brain Res, 2000, 862(1-2): 36-42. DOI: 10.1016/s0006-8993(00)02090-4.
|
6. |
Osborne NN, Larsen AK. Antigens associated with specific retinal cells are affected by ischaemia caused by raised intraocular pressure: effect of glutamate antagonists[J]. Neurochem Int, 1996, 29(3): 263-270. DOI: 10.1016/0197-0186(96)00005-8.
|
7. |
Gurdita A, Tan B, Joos KM, et al. Pigmented and albino rats differ in their responses to moderate, acute and reversible intraocular pressure elevation[J]. Doc Ophthalmol, 2017, 134(3): 205-219. DOI: 10.1007/s10633-017-9586-x.
|
8. |
Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147. DOI: 10.1016/j.preteyeres.2003.12.001.
|
9. |
Gehlbach P, Purple RL. Enhancement of retinal recovery by conjugated deferoxamine after ischemia-reperfusion[J]. Invest Ophthalmol Vis Sci, 1994, 35(2): 669-676. DOI: 10.1007/BF00171675.
|
10. |
Shabanzadeh AP, D'Onofrio PM, Monnier PP, et al. Neurosurgical modeling of retinal ischemia-reperfusion injury[J]. J Stroke Cerebrovasc Dis, 2018, 27(4): 845-856. DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.019.
|
11. |
Sugiyama K, Gu ZB, Kawase C, et al. Optic nerve and peripapillary choroidal microvasculature of the rat eye[J]. Invest Ophthalmol Vis Sci, 1999, 40(13): 3084-3090.
|
12. |
Allen RS, Sayeed I, Cale HA, et al. Severity of middle cerebral artery occlusion determines retinal deficits in rats[J]. Exp Neurol, 2014, 254: 206-215. DOI: 10.1016/j.expneurol.2014.02.005.
|
13. |
Scremin, Oscar U. Cerebral vascular system[M]//Paxinos G. The rat nervous system. 4th ed. Amsterdam: Elsevier Inc., 2015: 985-1011.
|
14. |
Block F, Schwarz M, Sontag KH. Retinal ischemia induced by occlusion of both common carotid arteries in rats as demonstrated by electroretinography[J]. Neurosci Lett, 1992, 144(1-2): 124-126. DOI: 10.1016/0304-3940(92)90731-l.
|
15. |
Qin Y, Ji M, Deng T, et al. Functional and morphologic study of retinal hypoperfusion injury induced by bilateral common carotid artery occlusion in rats[J/OL]. Sci Rep, 2019, 9(1): 80[2019-01-14]. https://pubmed.ncbi.nlm.nih.gov/30643163/. DOI: 10.1038/s41598-018-36400-5.
|
16. |
Karamian P, Burford J, Farzad S, et al. Alterations in retinal oxygen delivery, metabolism, and extraction fraction during bilateral common carotid artery occlusion in rats[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3247-3253. DOI: 10.1167/iovs.19-27227.
|
17. |
Blair NP, Felder AE, Tan MR, et al. A model for graded retinal ischemia in rats[J/OL]. Transl Vis Sci Technol, 2018, 7(3): 10[2018-06-04]. https://pubmed.ncbi.nlm.nih.gov/29881647/. DOI: 10.1167/tvst.7.3.10.
|
18. |
Guo XJ, Tian XS, Ruan Z, et al. Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina[J]. Exp Eye Res, 2014, 125: 156-163. DOI: 10.1016/j.exer.2014.06.003.
|
19. |
Tian XS, Guo XJ, Ruan Z, et al. Long-term vision and non-vision dominant behavioral deficits in the 2-VO rats are accompanied by time and regional glial activation in the white matter[J/OL]. Plos One, 2014, 9(6): e101120[2014-06-26]. https://pubmed.ncbi.nlm.nih.gov/24968196/. DOI: 10.1371/journal.pone.0101120.
|
20. |
孙伟, 耿悦, 陈叶婷, 等. Sprague-Dawley与Wistar大鼠双侧颈总动脉结扎后大脑病理变化和认知功能的差异[J]. 生理学报, 2019, 1(5): 705-716. DOI: 10.13294/j.aps.2019.0065.Sun W, Geng Y, Chen YT, et al. Differences of brain pathological changes and cognitive function after bilateral common carotid artery occlusion between Sprague-Dawley and Wistar rats[J]. Sheng Li Xue Bao, 2019, 1(5): 705-716. DOI: 10.13294/j.aps.2019.0065.
|
21. |
Minhas G, Morishita R, Anand A. Preclinical models to investigate retinal ischemia: advances and drawbacks[J/OL]. Front Neurol, 2012, 3: 75[2012-05-11]. https://pubmed.ncbi.nlm.nih.gov/22593752/. DOI: 10.3389/fneur.2012.00075.
|
22. |
Minhas G, Morishita R, Shimamura M, et al. Modeling transient retinal ischemia in mouse by ligation of pterygopalatine artery[J]. Ann Neurosci, 2015, 22(4): 222-225. DOI: 10.5214/ans.0972.7531.220406.
|
23. |
Ogishima H, Nakamura S, Nakanishi T, et al. Ligation of the pterygopalatine and external carotid arteries induces ischemic damage in the murine retina[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9710-9720. DOI: 10.1167/iovs.11-8160.
|
24. |
Ohta H, Nishikawa H, Kimura H, et al. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats[J]. Neuroscience, 1997, 79(4): 1039-1050. DOI: 10.1016/s0306-4522(97)00037-7.
|
25. |
Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia[J]. Ann Neurol, 1982, 11(5): 491-498. DOI: 10.1002/ana.410110509.
|
26. |
Wang W, Liu X, Lu H, et al. A method for predicting the success of Pulsinell's four-vessel occlusion rat model by LDF monitoring of cerebral blood flow decline[J/OL]. J Neurosci Methods, 2019, 328: 108439[2019-12-01]. https://pubmed.ncbi.nlm.nih.gov/31545958/. DOI: 10.1016/j.jneumeth.2019.108439.
|
27. |
Ozden S, Müftüoğlu S, Tatlipinar S, et al. Protective effects of antithrombin Ⅲ on retinal ischemia/reperfusion injury in rats: a histopathologic study[J]. Eur J Ophthalmol, 2005, 15(3): 367-373. DOI: 10.1177/112067210501500309.
|
28. |
Gallyas F, Hsu M, Buzsaki G. Delayed degeneration of the optic tract and neurons in the superior colliculus after forebrain ischemia[J]. Neurosci Lett, 1992, 144(1-2): 177-179. DOI: 10.1016/0304-3940(92)90744-r.
|
29. |
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. DOI: 10.1161/01.str.20.1.84.
|
30. |
Block F, Grommes C, Kosinski C, et al. Retinal ischemia induced by the intraluminal suture method in rats[J]. Neurosci Lett, 1997, 232(1): 45-48. DOI: 10.1016/s0304-3940(97)00575-2.
|
31. |
Steele EC, Guo Q, Namura S. Filamentous middle cerebral artery occlusion causes ischemic damage to the retina in mice[J]. Stroke, 2008, 39(7): 2099-2104. DOI: 10.1161/STROKEAHA.107.504357.
|
32. |
Lee JY, Castelli V, Bonsack B, et al. Eyeballing stroke: Blood flow alterations in the eye and visual impairments following transient middle cerebral artery occlusion in adult rats[J/OL]. Cell Transplant, 2020, 29: 963689720905805[2020-01-29]. https://pubmed.ncbi.nlm.nih.gov/32098493/. DOI: 10.1177/0963689720905805.
|
33. |
Tian X, Guo J, Zhu M, et al. δ-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat[J/OL]. PLoS One, 2013, 8(7): e69252[2013-07-02]. https://pubmed.ncbi.nlm.nih.gov/23844255/. DOI: 10.1371/journal.pone.0069252.
|
34. |
Geng Y, Chen Y, Sun W, et al. Electroacupuncture ameliorates cerebral I/R-induced inflammation through DOR-BDNF/TrkB Pathway[J/OL]. Evid Based Complement Alternat Med, 2020, 2020: 3495836[2020-03-16]. https://pubmed.ncbi.nlm.nih.gov/32256638/. DOI: 10.1155/2020/3495836.
|
35. |
Wilson CA, Hatchell DL. Photodynamic retinal vascular thrombosis. Rate and duration of vascular occlusion[J]. Invest Ophthalmol Vis Sci, 1991, 32(8): 2357-2365.
|
36. |
Nanda SK, Hatchell DL, Tiedeman JS, et al. A new method for vascular occlusion. Photochemical initiation of thrombosis[J]. Arch Ophthalmol, 1987, 105(8): 1121-1124. DOI: 10.1001/archopht.1987.01060080123041.
|
37. |
Watson BD, Dietrich WD, Busto R, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Ann Neurol, 1985, 17(5): 497-504. DOI: 10.1002/ana.410170513.
|
38. |
Nguyen VP, Li Y, Zhang W, et al. High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits[J/OL]. Sci Rep, 2019, 9(1): 10560[2019-07-22]. https://pubmed.ncbi.nlm.nih.gov/31332266/. DOI: 10.1038/s41598-019-47062-2.
|
39. |
温鑫, 袁敏而, 李成, 等. 新型视网膜缺血-再灌注损伤模型的建立及评价[J]. 中华实验眼科杂志, 2020, 38(7): 566-572. DOI: 10.3760/cma.j.cn115989-20190404-00162.Wei X, Yuan ME, Li C, et al. Establishment and evaluation of a novel retinal ischemia-reperfusion injury model[J]. Chin J Exp Ophthalmol, 2020, 38(7): 566-572. DOI: 10.3760/cma.j.cn115989-20190404-00162.
|
40. |
Ogura Y, Guran T, Takahashi K, et al. Occlusion of retinal vessels using targeted delivery of a platelet aggregating agent[J]. Br J Ophthalmol, 1993, 77(4): 233-237. DOI: 10.1136/bjo.77.4.233.
|
41. |
Takei K, Sato T, Nonoyama T, et al. A new model of transient complete obstruction of retinal vessels induced by endothelin-1 injection into the posterior vitreous body in rabbits[J]. Graefe’s Arch Clin Exp Ophthalmol, 1993, 231(8): 476-481. DOI: 10.1007/BF02044235.
|
42. |
Bursell SE, Clermont AC, Oren B, et al. The in vivo effect of endothelins on retinal circulation in nondiabetic and diabetic rats[J]. Invest Ophthalmol Vis Sci, 1995, 36(3): 596-607.
|
43. |
Lau J, Dang M, Hockmann K, et al. Effects of acute delivery of endothelin-1 on retinal ganglion cell loss in the rat[J]. Exp Eye Res, 2006, 82(1): 132-145. DOI: 10.1016/j.exer.2005.06.002.
|
44. |
Tamura M. Neovascularization in experimental retinal venous obstruction in rabbits[J]. Jpn J Ophthalmol, 2001, 45(2): 144-150. DOI: 10.1016/s0021-5155(00)00353-1.
|
45. |
El-Dessouky ES, Moshfeghi AA, Peyman GA, et al. Toxicity of the photosensitizer NPe6 following intravitreal injection[J]. Ophthalmic Surg Lasers, 2001, 32(4): 316-321. DOI: 10.1097/00006324-200004000-00014.
|
46. |
Huang W, Yang AH, Matsumoto D, et al. PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion[J]. J Ocul Pharmacol Ther, 2009, 25(6): 519-530. DOI: 10.1089/jop.2009.0060.
|
47. |
Hayreh SS, Piegors DJ, Heistad DD. Serotonin-induced constriction of ocular arteries in atherosclerotic monkeys. Implications for ischemic disorders of the retina and optic nerve head[J]. Arch Ophthalmol, 1997, 115(2): 220-228. DOI: 10.1001/archopht.1997.01100150222012.
|
48. |
Li B, Pang IH, Barnes G, et al. A new method and device to induce transient retinal ischemia in the rat[J]. Curr Eye Res, 2002, 24(6): 458-464. DOI: 10.1076/ceyr.24.6.458.8596.
|
49. |
Weber M, Bonaventure N, Sahel JA. Protective role of excitatory amino acid antagonists in experimental retinal ischemia[J]. Graefe’s Arch Clin Exp Ophthalmol, 1995, 233(6): 360-365. DOI: 10.1007/BF00200485.
|
50. |
Birol G, Budzynski E, Wangsa-Wirawan ND, et al. Hyperoxia promotes electroretinogram recovery after retinal artery occlusion in cats[J]. Invest Ophthalmol Vis Sci, 2004, 45(10): 3690-3696. DOI: 10.1167/iovs.04-0062.
|
51. |
Soga K, Fujita H, Andoh T, et al. Retinal artery air embolism in dogs: fluorescein angiographic evaluation of effects of hypotension and hemodilution[J]. Anesth Analg, 1999, 88(5): 1004-1010. DOI: 10.1097/00000539-199905000-00007.
|
52. |
Chiang C, Zhou S, Chen C, et al. Intravenous hyaluronidase with urokinase as treatment for rabbit retinal artery hyaluronic acid embolism[J]. Plast Reconstr Surg, 2016, 138(6): 1221-1229. DOI: 10.1097/PRS.0000000000002803.
|
53. |
Ciulla TA, Moulton R, Oberoi A, et al. Retinal artery occlusion in rabbit eyes using human atheroma[J]. Curr Eye Res, 1995, 14(7): 573-578. DOI: 10.3109/02713689508998404.
|
54. |
Scheurer G, Praetorius G, Damerau B, et al. Vascular occlusion of the retina: an experimental model. I. Leukocyte aggregates[J]. Graefe’s Arch Clin Exp Ophthalmol, 1992, 230(3): 275-280. DOI: 10.1007/BF00176304.
|
55. |
Morén H, Gesslein B, Undrén P, et al. Endovascular coiling of the ophthalmic artery in pigs to induce retinal ischemia[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4880-4885. DOI: 10.1167/iovs.11-7628.
|