1. |
Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors[J/OL]. J Glob Health, 2019, 9(1): 010427[2019-5-12]. http://europepmc.org/article/MED/31131101. DOI: 10.7189/jogh.09.010427.
|
2. |
Campa C, Alivernini G, Bolletta E, et al. Anti-VEGF therapy for retinal vein occlusions[J]. Curr Drug Targets, 2016, 17(3): 328-336. DOI: 10.2174/1573399811666150615151324.
|
3. |
林莉, 陈松. 玻璃体腔注射抗血管内皮生长因子单克隆抗体ranibizumab治疗视网膜静脉阻塞黄斑水肿的研究现状[J]. 中华眼底病杂志, 2013, 29(6): 637-640. DOI: 10.3760/cma.j.issn.1005-1015.2013.06.029.Lin L, Chen S. Research status of intravitreal injection of anti-vascular endothelial growth factor monoclonal antibody ranibizumab in the treatment of macular edema secondary to retinal vein occlusion[J]. Chin J Ocul Fundus Dis, 2013, 29(6): 637-640. DOI: 10.3760/cma.j.issn.1005-1015.2013.06.029.
|
4. |
Qian T, Zhao M, Xu X. Comparison between anti-VEGF therapy and corticosteroid or laser therapy for macular oedema secondary to retinal vein occlusion: a meta-analysis[J]. J Clin Pharm Ther, 2017, 42(5): 519-529. DOI: 10.1111/jcpt.12551.
|
5. |
Sangroongruangsri S, Ratanapakorn T, Wu O, et al. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: a systematic review and network meta-analysis[J]. Expert Rev Clin Pharmacol, 2018, 11(9): 903-916. DOI: 10.1080/17512433.2018.1507735.
|
6. |
Seknazi D, Coscas F, Sellam A, et al. Optical coherence tomography angiography in retinal vein occlusion: correlations between macular vascular density, visual acuity, and peripheral nonperfusion area on fluorescein angiography[J]. Retina, 2018, 38(8): 1562-1570. DOI: 10.1097/iae.0000000000001737.
|
7. |
Winegarner A, Wakabayashi T, Fukushima Y, et al. Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2708-2716. DOI: 10.1167/iovs.17-23437.
|
8. |
Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface[J]. Prog Retin Eye Res, 2018, 63: 20-68. DOI: 10.1016/j.preteyeres.2017.10.006.
|
9. |
Rojo Arias JE, Economopoulou M, Juárez López DA, et al. VEGF-trap is a potent modulator of vasoregenerative responses and protects dopaminergic amacrine network integrity in degenerative ischemic neovascular retinopathy[J]. J Neurochem, 2020, 153(3): 390-412. DOI: 10.1111/jnc.14875.
|
10. |
Scott IU, Oden NL, VanVeldhuisen PC, et al. Month 24 outcomes after treatment initiation with anti-vascular endothelial growth factor therapy for macular edema due to central retinal or hemiretinal vein occlusion: SCORE2 report 10: a secondary analysis of the SCORE2 randomized clinical trial[J]. JAMA Ophthalmol, 2019, 137(12): 1389-1398. DOI: 10.1001/jamaophthalmol.2019.3947.
|
11. |
Casselholm de Salles M, Amrén U, Kvanta A, et al. Injection frequency of aflibercept versus ranibizumab in a treat-and-extend regimen for central retinal vein occlusion: a randomized clinical trial[J]. Retina, 2019, 39(7): 1370-1376. DOI: 10.1097/iae.0000000000002171.
|
12. |
Koulisis N, Kim AY, Chu Z, et al. Quantitative microvascular analysis of retinal venous occlusions by spectral domain optical coherence tomography angiography[J/OL]. PLoS One, 2017, 12(4): e0176404[2017-04-24]. https://doi.org/10.1371/journal.pone.0176404. DOI: 10.1371/journal.pone.0176404.
|
13. |
Tsuboi K, Kamei M. Longitudinal vasculature changes in branch retinal vein occlusion with projection-resolved optical coherence tomography angiography[J]. Graefe’s Arch Clin Exp Ophthalmol, 2019, 257(9): 1831-1840. DOI: 10.1007/s00417-019-04371-6.
|
14. |
Deng Y, Cai X, Zhang S, et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J]. Ophthalmologica, 2019, 242(2): 69-80. DOI: 10.1159/000499608.
|
15. |
Balaratnasingam C, Inoue M, Ahn S, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion[J]. Ophthalmology, 2016, 123(11): 2352-2367. DOI: 10.1016/j.ophtha.2016.07.008.
|
16. |
Noma H, Mimura T, Eguchi S. Association of inflammatory factors with macular edema in branch retinal vein occlusion[J]. JAMA Ophthalmol, 2013, 131(2): 160-165. DOI: 10.1001/2013.jamaophthalmol.228.
|
17. |
Xia JP, Wang S, Zhang JS. The anti-inflammatory and anti-oxidative effects of conbercept in treatment of macular edema secondary to retinal vein occlusion[J]. Biochem Biophys Res Commun, 2019, 508(4): 1264-1270. DOI: 10.1016/j.bbrc.2018.12.049.
|
18. |
Suzuki N, Hirano Y, Tomiyasu T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5681-5687. DOI: 10.1167/iovs-16-20648.
|
19. |
Wakabayashi T, Sato T, Hara-Ueno C, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2087-2094. DOI: 10.1167/iovs.16-21208.
|
20. |
Winegarner A, Wakabayashi T, Hara-Ueno C, et al. Retinal microvasculature and visual acuity after intravitreal aflibercept in eyes with central retinal vein occlusion: an optical coherence tomography angiography study[J]. Retina, 2018, 38(10): 2067-2072. DOI: 10.1097/iae.0000000000001828.
|