1. |
Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, 2002, 12(9): 735-739. DOI: 10.1016/s0960-9822(02)00809-6.
|
2. |
Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy[J/OL]. Biosci Rep, 2017, 37(6): BSR20171157[2017-11-29]. https://pubmed.ncbi.nlm.nih.gov/29074557/. DOI: 10.1042/BSR20171157.
|
3. |
Nikolic I, Plate KH, Schmidt MHH. EGFL7 meets miRNA-126: an angiogenesis alliance[J/OL]. J Angiogenes Res, 2010, 2(1): 9[2010-06-08]. https://pubmed.ncbi.nlm.nih.gov/20529320/. DOI: 10.1186/2040-2384-2-9.
|
4. |
Hu MH, Ma CY, Wang XM, et al. MicroRNA-126 inhibits tumor proliferation and angiogenesis of hepatocellular carcinoma by down-regulating EGFL7 expression[J]. Oncotarget, 2016, 7(41): 66922-66934. DOI: 10.18632/oncotarget.11877.
|
5. |
Sohel MMH. Circulating microRNAs as biomarkers in cancer diagnosis[J/OL]. Life Sci, 2020, 248: 117473[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32114007/. DOI: 10.1016/j.lfs.2020.117473.
|
6. |
Liu CH, Huang S, Britton WR, et al. MicroRNAs in vascular eye diseases[J/OL]. Int J Mol Sci, 2020, 21(2): 649[2020-01-19]. https://pubmed.ncbi.nlm.nih.gov/31963809/. DOI: 10.3390/ijms21020649.
|
7. |
Zhou Q, Frost RJA, Anderson C, et al. let-7 contributes to diabetic retinopathy but represses pathological ocular angiogenesis[J/OL]. Mol Cell Biol, 2017, 37(16): e00001-00017[2017-07-28]. https://pubmed.ncbi.nlm.nih.gov/28584193/. DOI: 10.1128/MCB.00001-17.
|
8. |
Pastukh N, Meerson A, Kalish D, et al. Serum miR-122 levels correlate with diabetic retinopathy[J]. Clin Exp Med, 2019, 19(2): 255-260. DOI: 10.1007/s10238-019-00546-x.
|
9. |
高宁宁, 宋凡倩, 葛红岩. miR-126与眼科疾病的研究进展[J]. 国际眼科杂志, 2017, 17(6): 1066-1068. DOI: 10.3980/j.issn.1672-5123.2017.6.14.Gao NN, Song FQ, Ge HY. Research advances of miR-126 and ophthalmic diseases[J]. Int Eye Sci, 2017, 17(6): 1066-1068. DOI: 10.3980/j.issn.1672-5123.2017.6.14.
|
10. |
Zhang D, Li Z, Wang Z, et al. MicroRNA-126: a promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy[J]. Diabetes Metab Syndr Obes, 2019, 12: 1685-1696. DOI: 10.2147/DMSO.S199705.
|
11. |
Alique M, Bodega G, Giannarelli C, et al. MicroRNA-126 regulates hypoxia-inducible factor-1α which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence[J/OL]. Sci Rep, 2019, 9(1): 7381[2019-05-14]. https://pubmed.ncbi.nlm.nih.gov/31089163/. DOI: 10.1038/s41598-019-43689-3.
|
12. |
Chen Z, Miao F, Paterson AD, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort[J/OL]. Proc Natl Acad Sci USA, 2016, 113(21): e3002-3011[2016-05-24]. https://pubmed.ncbi.nlm.nih.gov/27162351/. DOI: 10.1073/pnas.1603712113.
|
13. |
Kowluru RA, Mohammad G. Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Sci Rep, 2020, 10(1): 6655[2020-04-20]. https://pubmed.ncbi.nlm.nih.gov/32313015/. DOI: 10.1038/s41598-020-63527-1.
|
14. |
Wang L, Lee AY, Wigg JP, et al. miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model[J/OL]. Int J Mol Sci, 2016, 17(6): 895[2016-06-07]. https://pubmed.ncbi.nlm.nih.gov/27338342/. DOI: 10.3390/ijms17060895.
|
15. |
魏文斌. 糖尿病视网膜病变魏文斌2017观点[M]. 北京: 科学技术文献出版社, 2017: 11-13.Wei WB. Diabetic retinopathy of Wei Wenbin 2017 views[M]. Beijing: Scientific and Technical Literature Publishing House, 2017: 11-13.
|
16. |
Li Q, Cheng K, Wang AY, et al. microRNA-126 inhibits tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway[J/OL]. Biomed Pharmacother, 2019, 116: 109007[2019-06-03]. https://pubmed.ncbi.nlm.nih.gov/31170663/. DOI: 10.1016/j.biopha.2019.109007.
|
17. |
何亚非, 黄婷, 刘艳霞, 等. 1型糖尿病患者血浆microRNA-126变化与内皮功能的相关性[J]. 中国动脉硬化杂志, 2014, 22(5): 485-488.He YF, Huang T, Liu YX, et al. The relationship between plasma level of microRNA-126 and endothelial function in patients with type 1 diabetes mellitus[J]. Chin J Arterioscler, 2014, 22(5): 485-488.
|
18. |
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J/OL]. Dev Cell, 2008, 15(2): 272-284[2008-08-15]. https://pubmed.ncbi.nlm.nih.gov/18694566/. DOI: 10.1016/j.devcel.2008.07.008.
|
19. |
王慧, 温晏, 闫丽, 等. 微小RNA-126在糖尿病视网膜病变患者血浆中的表达及作用机制研究[J]. 中国基层医药, 2016, 23(14): 2134-2137. DOI: 10.3760/cma.j.issn.1008-6706.2016.14.015.Wang H, Wen Y, Yan L, et al. Expressions of microRNA-126 in the blood plasma in patients with diabetic retinopathy and its mechanism[J]. Chin J Prin Med Pharm, 2016, 23(14): 2134-2137. DOI: 10.3760/cma.j.issn.1008-6706.2016.14.015.
|
20. |
Chang L, Liang J, Xia X, et al. miRNA-126 enhances viability, colony formation, and migration of keratinocytes HaCaT cells by regulating PI3K/AKT signaling pathway[J]. Cell Biol Int, 2019, 43(2): 182-191. DOI: 10.1002/cbin.11088.
|
21. |
Esser JS, Saretzki E, Pankratz F, et al. Bone morphogenetic protein 4 regulates microRNAs miR-494 and miR-126-5p in control of endothelial cell function in angiogenesis[J]. Thromb Haemost, 2017, 117(4): 734-749. DOI: 10.1160/TH16-08-0643.
|
22. |
Yang WZ, Yang J, Xue LP, et al. MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2[J]. J Diabetes Complications, 2017, 31(4): 653-663. DOI: 10.1016/j.jdiacomp.2016.12.004.
|
23. |
Zou J, Li WQ, Li Q, et al. Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish[J/OL]. Circ Res, 2011, 108(2): 201-209[2011-01-21]. https://pubmed.ncbi.nlm.nih.gov/21148433/. DOI: 10.1161/CIRCRESAHA.110.225045.
|
24. |
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J]. J Cell Mol Med, 2009, 13(8A): 1577-1585. DOI: 10.1111/j.1582-4934.2008.00613.x.
|
25. |
Nammian P, Razban V, Tabei SMB, et al. MicroRNA-126: dual role in angiogenesis dependent diseases[J]. Curr Pharm Des, 2020, 26(38): 4883-4893. DOI: 10.2174/1381612826666200504120737.
|
26. |
Ishizaki T, Tamiya T, Taniguchi K, et al. miR126 positively regulates mast cell proliferation and cytokine production through suppressing spred1[J]. Genes Cells, 2011, 16(7): 803-814. DOI: 10.1111/j.1365-2443.2011.01529.x.
|
27. |
Mazzeo A, Beltramo E, Iavello A, et al. Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy[J]. Acta Diabetol, 2015, 52(6): 1113-1119. DOI: 10.1007/s00592-015-0798-9.
|
28. |
Bai Y, Bai X, Wang Z, et al. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors[J]. Exp Mol Pathol, 2011, 91(1): 471-477. DOI: 10.1016/j.yexmp.2011.04.016.
|
29. |
Chen P, Gu YY, Ma FC, et al. Expression levels and co-targets of miRNA-126-3p and miRNA-126-5p in lung adenocarcinoma tissues: an exploration with RT-qPCR, microarray and bioinformatic analyses[J]. Oncol Rep, 2019, 41(2): 939-953. DOI: 10.3892/or.2018.6901.
|
30. |
Zhao F, Anderson C, Karnes S, et al. Expression, regulation and function of miR-126 in the mouse choroid vasculature[J]. Exp Eye Res, 2018, 170: 169-176. DOI: 10.1016/j.exer.2018.02.026.
|
31. |
王璐, 张洲铭, 金诺, 等. miR-126多基因靶向调控血管再生的研究[J]. 实用口腔医学杂志, 2019, 35(3): 340-344. DOI: 10.3969/j.issn.1001-3733.2019.03.004.Wang L, Zhang ZM, Jin N, et al. miR-126 promotes vascularization by regulating multiple angiogenesis genes[J]. J Pract Stomatol, 2019, 35(3): 340-344. DOI: 10.3969/j.issn.1001-3733.2019.03.004.
|
32. |
Yuan Y, Shen C, Zhao SL, et al. MicroRNA-126 affects cell apoptosis, proliferation, cell cycle and modulates VEGF/TGF-β levels in pulmonary artery endothelial cells[J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 3058-3069. DOI: 10.26355/eurrev_201904_17588.
|
33. |
Lutty GA. Effects of diabetes on the eye[J/OL]. Invest Ophthalmol Vis Sci, 2013, 54(14): ORSF81-ORSF87[2013-12-13]. https://pubmed.ncbi.nlm.nih.gov/24335073/. DOI: 10.1167/iovs.13-12979.
|
34. |
Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization[J]. Diabetes Care, 2014, 37(5): 1375-1383. DOI: 10.2337/dc13-1847.
|
35. |
Zhang W, Wang Y, Kong Y, et al. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. DOI: 10.1167/iovs.18-25617.
|
36. |
Chen X, Yu X, Li X, et al. MiR-126 targets IL-17A to enhance proliferation and inhibit apoptosis in high-glucose-induced human retinal endothelial cells[J]. Biochem Cell Biol, 2020, 98(2): 277-283. DOI: 10.1139/bcb-2019-0174.
|
37. |
Barutta F, Bellini S, Mastrocola R, et al. MicroRNA and microvascular complications of diabetes[J/OL]. Int J Endocrinol, 2018, 2018: 6890501[2018-03-07]. http://europepmc.org/article/MED/29707000. DOI: 10.1155/2018/6890501.
|
38. |
Sun LL, Li WD, Lei FR, et al. The regulatory role of microRNAs in angiogenesis-related diseases[J]. J Cell Mol Med, 2018, 22(10): 4568-4587. DOI: 10.1111/jcmm.13700.
|
39. |
Ghai V, Wang K. Recent progress toward the use of circulating microRNAs as clinical biomarkers[J]. Arch Toxicol, 2016, 90(12): 2959-2978. DOI: 10.1007/s00204-016-1828-2.
|
40. |
Rezk NA, Sabbah NA, Saad MS. Role of microRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt[J]. IUBMB Life, 2016, 68(6): 452-458. DOI: 10.1002/iub.1502.
|
41. |
Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study[J]. Acta Diabetol, 2017, 54(2): 133-139. DOI: 10.1007/s00592-016-0915-4.
|
42. |
郗晓云. 糖尿病视网膜病变血浆microRNA-126的相对表达及临床意义[D]. 衡阳: 南华大学, 2016.Hao XY. Relative expression and clinical significance of plasma microRNA-126 in diabetic retinopathy[D]. Hengyang: University of South China, 2016.
|
43. |
Qin LL, An MX, Liu YL, et al. MicroRNA-126: a promising novel biomarker in peripheral blood for diabetic retinopathy[J]. Int J Ophthalmol, 2017, 10(4): 530-534. DOI: 10.18240/ijo.2017.04.05.
|
44. |
Liu R, Liu CM, Cui LL, et al. Expression and significance of miR-126 and VEGF in proliferative diabetic retinopathy[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15): 6387-6393. DOI: 10.26355/eurrev_201908_18518.
|
45. |
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes[J]. Diabetes, 2016, 65(1): 216-227. DOI: 10.2337/db15-0389.
|
46. |
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics[J]. J Cell Physiol, 2016, 231(1): 25-30. DOI: 10.1002/jcp.25056.
|
47. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
|
48. |
Moura J, Børsheim E, Carvalho E. The role of microRNAs in diabetic complications-special emphasis on wound healing[J]. Genes (Basel), 2014, 5(4): 926-956. DOI: 10.3390/genes5040926.
|
49. |
Witkowski M, Weithauser A, Tabaraie T, et al. Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6): 1263-1271. DOI: 10.1161/ATVBAHA.115.306094.
|
50. |
Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy[J/OL]. Sci Rep, 2016, 6: 26909[2016-05-26]. https://pubmed.ncbi.nlm.nih.gov/27225425/. DOI: 10.1038/srep26909.
|
51. |
Nie H, Zhang K, Xu J, et al. Combining bioinformatics techniques to study diabetes biomarkers and related molecular mechanisms[J/OL]. Front Genet, 2020, 11: 367[2020-04-30]. https://pubmed.ncbi.nlm.nih.gov/32425976/. DOI: 10.3389/fgene.2020.00367.
|