1. |
Liu SA, Zhao ZN, Sun NN, et al. Transitions of the understanding and definition of primary glaucoma[J]. Chin Med J (Engl), 2018, 131(23): 2852-2859. DOI: 10.4103/0366-6999.246069.
|
2. |
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. DOI: 10.1001/jama.2014.3192.
|
3. |
He S, Stankowska DL, Ellis DZ, et al. Targets of neuroprotection in glaucoma[J]. J Ocul Pharmacol Ther, 2018, 34(1-2): 85-106. DOI: 10.1089/jop.2017.0041.
|
4. |
Doozandeh A, Yazdani S. Neuroprotection in glaucoma[J]. J Ophthalmic Vis Res, 2016, 11(2): 209-220. DOI: 10.4103/2008-322X.183923.
|
5. |
Yang RX, Lei J, Wang BD, et al. Pretreatment with sodium phenylbutyrate alleviates cerebral ischemia/reperfusion injury by upregulating DJ-1 protein[J/OL]. Front Neurol, 2017, 8: 256[2017-06-09]. https://pubmed.ncbi.nlm.nih.gov/28649223/. DOI: 10.3389/fneur.2017.00256.
|
6. |
Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism[J]. Science, 2003, 299(5604): 256-259. DOI: 10.1126/science.1077209.
|
7. |
Ariga H, Takahashi-Niki K, Kato I, et al. Neuroprotective function of DJ-1 in Parkinson's disease[J/OL]. Oxid Med Cell Longev, 2013, 2013: 683920[2013-05-16]. https://pubmed.ncbi.nlm.nih.gov/23766857/. DOI: 10.1155/2013/683920.
|
8. |
Gao H, Yang W, Qi Z, et al. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy[J]. J Mol Biol, 2012, 423(2): 232-248. DOI: 10.1016/j.jmb.2012.06.034.
|
9. |
Kitamura Y, Inden M, Kimoto Y, et al. Effects of a DJ-1-binding compound on spatial learning and memory impairment in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2017, 55(1): 67-72. DOI: 10.3233/JAD-160574.
|
10. |
Satue M, Rodrigo MJ, Obis J, et al. Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1151-1157. DOI: 10.1167/iovs.16-20460.
|
11. |
Yun H, Lathrop KL, Yang E, et al. A laser-induced mouse model with long-term intraocular pressure elevation[J/OL]. PLoS One, 2014, 9(9): e107446[2014-09-12]. https://pubmed.ncbi.nlm.nih.gov/25216052/. DOI: 10.1371/journal.pone.0107446.
|
12. |
Park SJ, Paik SS, Lee JY, et al. Blue-on-green flash induces maximal photopic negative response and oscillatory potential and serves as a diagnostic marker for glaucoma in rat retina[J]. Exp Neurobiol, 2018, 27(3): 210-216. DOI: 10.5607/en.2018.27.3.210.
|
13. |
Kretschmer F, Sajgo S, Kretschmer V, et al. A system to measure the optokinetic and optomotor response in mice[J]. J Neurosci Methods, 2015, 256: 91-105. DOI: 10.1016/j.jneumeth.2015.08.007.
|
14. |
刘一帆, 沈吟. 低浓度氯喹保护成年小鼠视网膜神经节细胞抵抗N-甲基-D-天冬氨酸的兴奋性毒性作用[J]. 中华眼底病杂志, 2020, 36(4): 295-301. DOI: 10.3760/cma.j.cn511434-20190903-00275.Liu YF, Sen Y. Low-dose chloroquine mediated neuroprotection against n-methyl-d-aspartate induced excitotoxicity in adult mice[J]. Chin J Ocul Fundus Dis, 2020, 36(4): 295-301. DOI: 10.3760/cma.j.cn511434-20190903-00275.
|
15. |
Hijioka M, Inden M, Yanagisawa D, et al. DJ-1/PARK7: a new therapeutic target for neurodegenerative disorders[J]. Biol Pharm Bull, 2017, 40(5): 548-552. DOI: 10.1248/bpb.b16-01006.
|
16. |
Oh SE, Mouradian MM. Regulation of signal transduction by DJ-1[J]. Adv Exp Med Biol, 2017, 1037: 97-131. DOI: 10.1007/978-981-10-6583-5_8.
|
17. |
Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death[J]. EMBO Rep, 2004, 5(2): 213-218. DOI: 10.1038/sj.embor.7400074.
|
18. |
Shadrach KG, Rayborn ME, Hollyfield JG, et al. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE)[J/OL]. PLoS One, 2013, 8(7): e67983[2013-07-02]. https://pubmed.ncbi.nlm.nih.gov/23844142/. DOI: 10.1371/journal.pone.0067983.
|
19. |
You Y, Gupta VK, Li JC, et al. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss[J]. Rev Neurosci, 2013, 24(3): 301-321. DOI: 10.1515/revneuro-2013-0003.
|
20. |
Li Y, Cohen ED, Qian H. Rod and cone coupling modulates photopic ERG responses in the mouse retina[J/OL]. Front Cell Neurosci, 2020, 14: 566712[2020-09-25]. https://pubmed.ncbi.nlm.nih.gov/33100974/. DOI: 10.3389/fncel.2020.566712.
|
21. |
Gauvin M, Dorfman AL, Trang N, et al. Assessing the contribution of the oscillatory potentials to the genesis of the photopic ERG with the discrete wavelet transform[J/OL]. Biomed Res Int, 2016, 2016: 2790194[2016-12-22]. https://pubmed.ncbi.nlm.nih.gov/28101507/. DOI: 10.1155/2016/2790194.
|
22. |
Fairless R, Williams SK, Katiyar R, et al. ERG responses in mice with deletion of the synaptic ribbon component RIBEYE[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(5): 37[2020-05-11]. https://pubmed.ncbi.nlm.nih.gov/32437548/. DOI: 10.1167/iovs.61.5.37.
|
23. |
Prencipe M, Perossini T, Brancoli G, et al. The photopic negative response (PhNR): measurement approaches and utility in glaucoma[J]. Int Ophthalmol, 2020, 40(12): 3565-3576. DOI: 10.1007/s10792-020-01515-0.
|
24. |
Brayer S, Joannes A, Jaillet M, et al. The pro-apoptotic BAX protein influences cell growth and differentiation from the nucleus in healthy interphasic cells[J]. Cell Cycle, 2017, 16(21): 2108-2118. DOI: 10.1080/15384101.2017.1371882.
|
25. |
Chen HC, Kanai M, Inoue-Yamauchi A, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family[J]. Nat Cell Biol, 2015, 17(10): 1270-1281. DOI: 10.1038/ncb3236.
|
26. |
Maes ME, Schlamp CL, Nickells RW. BAX to basics: how the BCL2 gene family controls the death of retinal ganglion cells[J]. Prog Retin Eye Res, 2017, 57: 1-25. DOI: 10.1016/j.preteyeres.2017.01.002.
|
27. |
Choi WS, Eom DS, Han BS, et al. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in dopaminergic neurons[J]. J Biol Chem, 2004, 279(19): 20451-20460. DOI: 10.1074/jbc.M311164200.
|
28. |
Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis[J]. Cell Signal, 2012, 24(6): 1185-1194. DOI: 10.1016/j.cellsig.2012.01.018.
|
29. |
Pantcheva P, Elias M, Duncan K, et al. The role of DJ-1 in the oxidative stress cell death cascade after stroke[J]. Neural Regen Res, 2014, 9(15): 1430-1433. DOI: 10.4103/1673-5374.139458.
|
30. |
Canet-Avilés RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization[J]. Proc Natl Acad Sci USA, 2004, 101(24): 9103-9108. DOI: 10.1073/pnas.0402959101.
|
31. |
Zhong N, Xu J. Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1alpha: regulation by SUMOylation and oxidation[J]. Hum Mol Genet, 2008, 17(21): 3357-3367. DOI: 10.1093/hmg/ddn230.
|
32. |
Qu D, Rashidian J, Mount MP, et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease[J]. Neuron, 2007, 55(1): 37-52. DOI: 10.1016/j.neuron.2007.05.033.
|
33. |
Wang W, Zhao H, Chen B. DJ-1 protects retinal pericytes against high glucose-induced oxidative stress through the Nrf2 signaling pathway[J/OL]. Sci Rep, 2020, 10(1): 2477[2020-02-12]. https://pubmed.ncbi.nlm.nih.gov/32051471/. DOI: 10.1038/s41598-020-59408-2.
|