1. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
|
2. |
Liao M, Wang X, Yu J, et al. Characteristics and outcomes of vitrectomy for proliferative diabetic retinopathy in young versus senior patients[J/OL]. BMC Ophthalmol, 2020, 20(1): 416[2020-10-19]. https://pubmed.ncbi.nlm.nih.gov/33076873/. DOI: 10.1186/s12886-020-01688-3.
|
3. |
宋尹婷, 颜华. 微粒在眼底疾病中的应用研究现状及进展[J]. 中华眼底病杂志, 2018, 34(2): 193-197. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.025.Song YT, Yan H. Current progress on the study of microparticles in ocular fundus diseases[J]. Chin J Ocul Fundus Dis, 2018, 34(2): 193-197. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.025.
|
4. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): P66-P145. DOI: 10.1016/j.ophtha.2019.09.025.
|
5. |
Zucchi FC, Tsanaclis AM, Moura-Dias Q Jr, et al. Modulation of angiogenic factor VEGF by DNA-hsp65 vaccination in a murine CNS tuberculosis model[J]. Tuberculosis (Edinb), 2013, 93(3): 373-380. DOI: 10.1016/j.tube.2013.02.002.
|
6. |
Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13(3): 269-288. DOI: 10.1111/j.1365-2141.1967.tb08741.x.
|
7. |
Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy[J]. J Cell Biochem, 2016, 117(11): 2443-2453. DOI: 10.1002/jcb.25575.
|
8. |
Li S, Wei J, Zhang C, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Cell Physiol Biochem, 2016, 39(6): 2439-2450. DOI: 10.1159/000452512.
|
9. |
Diamant M, Nieuwland R, Pablo RF, et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus[J]. Circulation, 2002, 106(19): 2442-2447. DOI: 10.1161/01.cir.0000036596.59665.c6.
|
10. |
Hjortoe GM, Petersen LC, Albrektsen T, et al. Tissue factor-factor Ⅶa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration[J]. Blood, 2004, 103(8): 3029-3037. DOI: 10.1182/blood-2003-10-3417.
|
11. |
Chahed S, Leroyer AS, Benzerroug M, et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation[J]. Diabetes, 2010, 59(3): 694-701. DOI: 10.2337/db08-1524.
|
12. |
Chang LK, Koizumi H, Spaide RF. Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes[J]. Retina, 2008, 28(7): 969-975. DOI: 10.1097/IAE.0b013e3181744165.
|
13. |
Gao Y, Smiddy WE. Morphometric analysis of epiretinal membranes using SD-OCT[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(6 Suppl): S7-15. DOI: 10.3928/15428877-20120726-02.
|
14. |
Curcio CA, Sloan KR, Kalina RE, et al. Human photoreceptor topography[J]. J Comp Neurol, 1990, 292(4): 497-523. DOI: 10.1002/cne.902920402.
|
15. |
Burnier L, Fontana P, Kwak BR, et al. Cell-derived microparticles in haemostasis and vascular medicine[J]. Thromb Haemost, 2009, 101(3): 439-451. DOI: 10.1160/TH08-08-0521.
|
16. |
Zwaal RF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells[J]. Cell Mol Life Sci, 2005, 62(9): 971-988. DOI: 10.1007/s00018-005-4527-3.
|
17. |
Thaler J, Ay C, Pabinger I. Clinical significance of circulating microparticles for venous thromboembolism in cancer patients[J]. Hamostaseologie, 2012, 32(2): 127-131. DOI: 10.5482/ha-1164.
|
18. |
Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis[J]. Thromb Res, 2003, 109(4): 175-180. DOI: 10.1016/s0049-3848(03)00064-1.
|
19. |
Connor DE, Exner T, Ma DD, et al. The majority of circulating platelet-derived microparticles fail to bind annexin Ⅴ, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib[J]. Thromb Haemost, 2010, 103(5): 1044-1052. DOI: 10.1160/TH09-09-0644.
|
20. |
Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles[J]. Thromb Haemost, 2011, 105(3): 396-408. DOI: 10.1160/TH10-09-0595.
|
21. |
Key NS, Chantrathammachart P, Moody PW, et al. Membrane microparticles in VTE and cancer[J]. Thromb Res, 2010, 125(Suppl 2): S80-83. DOI: 10.1016/S0049-3848(10)70020-7.
|
22. |
Berckmans RJ, Nieuwland R, Tak PP, et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor Ⅶ-dependent mechanism[J]. Arthritis Rheum, 2002, 46(11): 2857-2866. DOI: 10.1002/art.10587.
|
23. |
Tumahai P, Saas P, Ricouard F, et al. Vitreous microparticle shedding in retinal detachment: a prospective comparative study[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 40-46. DOI: 10.1167/iovs.15-17446.
|
24. |
Guan G, Zang J. Meta-analysis of the effect of perioperative injection of lucentis on intraoperative bleeding in patients with proliferative diabetic retinopathy[J]. Eye Sci, 2015, 30(4): 171-175.
|
25. |
Montero JA, Ruiz-Moreno JM, Correa ME. Intravitreal anti-VEGF drugs as adjuvant therapy in diabetic retinopathy surgery[J]. Curr Diabetes Rev, 2011, 7(3): 176-184. DOI: 10.2174/157339911795843104.
|
26. |
Pérez-Argandoña E, Verdaguer J, Zacharías S, et al. Preoperative intravitreal bevacizumab for proliferative diabetic retinopathy patients undergoing vitrectomy-first update[J/OL]. Medwave, 2019, 19(1): e7512[2019-01-25]. https://pubmed.ncbi.nlm.nih.gov/30816881/.DOI: 10.5867/medwave.2019.01.7511.
|
27. |
Munster M, Fremder E, Miller V, et al. Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles[J/OL]. PLoS One, 2014, 9(4): e95983[2014-04-21]. https://pubmed.ncbi.nlm.nih.gov/24752333/. DOI: 10.1371/journal.pone.0095983.
|
28. |
Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets[J]. Thromb Haemost, 2007, 97(3): 425-434. DOI: 10.1160/TH06-06-0313.
|
29. |
Freyssinet JM, Toti F. Formation of procoagulant microparticles and properties[J]. Thromb Res, 2010, 125 Suppl 1: S46-48. DOI: 10.1016/j.thromres.2010.01.036.
|
30. |
Yu M, Xie R, Zhang Y, et al. Phosphatidylserine on microparticles and associated cells contributes to the hypercoagulable state in diabetic kidney disease[J]. Nephrol Dial Transplant, 2018, 33(12): 2115-2127. DOI: 10.1093/ndt/gfy027.
|
31. |
Sinning JM, Losch J, Walenta K, et al. Circulating CD31+/Annexin Ⅴ+ microparticles correlate with cardiovascular outcomes[J]. Eur Heart J, 2011, 32(16): 2034-2041. DOI: 10.1093/eurheartj/ehq478.
|
32. |
Schurgers LJ, Burgmaier M, Ueland T, et al. Circulating annexin A5 predicts mortality in patients with heart failure[J]. J Intern Med, 2016, 279(1): 89-97. DOI: 10.1111/joim.12396.
|
33. |
Jadli A, Ghosh K, Satoskar P, et al. Combination of copeptin, placental growth factor and total annexin Ⅴ microparticles for prediction of preeclampsia at 10-14 weeks of gestation[J]. Placenta, 2017, 58: 67-73. DOI: 10.1016/j.placenta.2017.08.009.
|