1. |
Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic retinopathy[J]. Prim Care, 2015, 42(3): 451-464. DOI: 10.1016/j.pop.2015.05.005.
|
2. |
胡志翔, 林海双, 叶凌颖, 等. 玻璃体切除术联合和非联合白内障手术治疗合并白内障的增殖期糖尿病性视网膜病变[J]. 温州医科大学学报, 2020, 50(10): 825-829. DOI: 10.3969/j.issn.2095-9400.2020.10.010.Hu ZX, Lin HS, Ye LY, et al. Vitrectomy combined with or without combined cataract surgery in the treatment of proliferative diabetic retinopathy with cataract[J]. Journal of Wenzhou Medical University, 2020, 50(10): 825-829. DOI: 10.3969/j.issn.2095-9400.2020.10.010.
|
3. |
Rodríguez-García A, Sola-Landa A, Barreiro C. RNA-seq-based comparative transcriptomics. RNA preparation and bioinformatics[J]. Methods Mol Biol, 2017, 1645: 59-72. DOI: 10.1007/978-1-4939-7183-1_5.
|
4. |
Koch CM, Chiu SF, Akbarpour M, et al. A beginner's guide to analysis of RNA sequencing data[J]. Am J Respir Cell Mol Biol, 2018, 59(2): 145-157. DOI: 10.1165/rcmb.2017-0430TR.
|
5. |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41: D991-995. DOI: 10.1093/nar/gks1193.
|
6. |
Gan TQ, Chen WJ, Qin H, et al. Clinical value and prospective pathway signaling of microRNA-375 in lung adenocarcinoma. A study based on the cancer genome atlas (TCGA), gene expression omnibus (GEO) and bioinformatics analysis[J]. Med Sci Monit, 2017, 23: 2453-2464. DOI: 10.12659/msm.901460.
|
7. |
Gao L, Zhang LJ, Li SH, et al. Role of miR-452-5p in the tumorigenesis of prostate cancer. A study based on the Cancer Genome Atl (TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis[J]. Pathol Res Pract, 2018, 214(5): 732-749. DOI: 10.1016/j.prp.2018.03.002.
|
8. |
Li Y, Gu J, Xu F, et al. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data[J/OL]. Sci Rep, 2018, 8(1): 15834[2018-10-26]. https://pubmed.ncbi.nlm.nih.gov/30367091/. DOI: 10.1038/s41598-018-34160-w.
|
9. |
中华医学会眼科学会眼底病学组. 糖尿病视网膜病变分期标准[J]. 中华眼科杂志, 1985, 21(2): 113.Fundus Diseases Group of the Chinese Academy of Ophthalmology. Diabetic retinopathy staging criteria[J]. Chin J Ophthalmol, 1985, 21(2): 113.
|
10. |
赵昔良, 叶益聪, 张抒扬. 美国糖尿病学会新版糖尿病诊断标准对择期冠状动脉造影患者糖代谢异常的筛查意义[J]. 中华内科杂志, 2015, 54(4): 302-306. DOI: 10.3760/cma.j.issn.0578-1426.2015.04.006.Zhao XL, Ye YC, Zhang SY. The values of the new American Diabetes Association diagnostic criteria for screening of pre-diabetes and diabetes in patients undergoing elective coronary angiography[J]. Chin J Intern Med, 2015, 54(4): 302-306. DOI: 10.3760/cma.j.issn.0578-1426.2015.04.006.
|
11. |
包继文, 李子扬, 尧欢珍, 等. METTL10表达下调与足细胞损伤的关系[J]. 上海交通大学学报医学版, 2021, 41(10): 1290-1296. DOI: 10.3969/j.issn.1674-8115.2021.10.003.Bao JW, Li ZY, Yao HZ, et al. Relationship between down-regulation of METTL10 expression and podocyte injury[J]. Journal of Shanghai Jiaotong University (Medical Science), 2021, 41(10): 1290-1296. DOI: 10.3969/j.issn.1674-8115.2021.10.003.
|
12. |
Smit-McBride Z, Nguyen AT, Yu AK, et al. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy[J/OL]. PLoS One, 2020, 15(7): e0235541[2020-07-21]. https://pubmed.ncbi.nlm.nih.gov/32692745/. DOI: 10.1371/journal.pone.0235541.
|
13. |
Niu R, Nie ZT, Liu L, et al. Follistatin-like protein 1 functions as a potential target of gene therapy in proliferative diabetic retinopathy[J]. Aging (Albany NY), 2021, 13(6): 8643-8664. DOI: 10.18632/aging.202678.
|
14. |
步绍翀, 张哲, 王琼, 等. 结缔组织生长因子刺激后视网膜Müller细胞基因表达谱的转录组学分析及验证[J]. 中华眼底病杂志, 2020, 36(12): 964-970. DOI: 10.3760/cma.j.cn511434-20200116-00026.Bu SC, Zhang Z, Wang Q, et al. Transcriptomic analysis and verification of gene expression profile of retinal Müller cells stimulated by connective tissue growth factor[J]. Chin J Ocul Fundus Dis, 2020, 36(12): 36(12): 964-970. DOI: 10.3760/cma.j.cn511434-20200116-00026.
|
15. |
Lazzara F, Fidilio A, Platania CBM, et al. Aflibercept regulates retinal inflammation elicited by high glucose via the PlGF/ERK pathway[J]. Biochem Pharmacol, 2019, 168: 341-351. DOI: 10.1016/j.bcp.2019.07.021.
|
16. |
Wang L, Zhou X, Yin Y, et al. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy[J/OL]. Front Immunol, 2019, 9: 3076[2019-01-08]. https://pubmed.ncbi.nlm.nih.gov/30671057/. DOI: 10.3389/fimmu.2018.03076.
|
17. |
Thapa R, Bajimaya S, Sharma S, et al. Systemic association of newly diagnosed proliferative diabetic retinopathy among type 2 diabetes patients presented at a tertiary eye hospital of Nepal[J]. Nepal J Ophthalmol, 2015, 7(1): 26-32. DOI: 10.3126/nepjoph.v7i1.13163.
|
18. |
Dong L, Lin T, Li W, et al. Antioxidative effects of polypyrimidine tract-binding protein-associated splicing factor against pathological retinal angiogenesis through promotion of mitochondrial function[J]. J Mol Med (Berl), 2021, 99(7): 967-980. DOI: 10.1007/s00109-021-02069-z.
|
19. |
黄亮瑜, 柯屹峰, 林婷婷, 等. 慢病毒介导聚嘧啶束结合蛋白相关剪接因子对氧诱导视网膜病变小鼠视网膜新生血管的抑制作用[J]. 中华眼底病杂志, 2020, 36(1): 53-59. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.Huang LY, Ke YF, Lin TT, et al. Inhibition of lentivirus mediated polypyrimidine binding protein related splicing factor on retinal neovascularization in mice with oxygen induced retinopathy[J]. Chin J Ocul Fundus Dis, 2020, 36(1): 53-59. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.
|
20. |
邢小丽, 黄亮瑜, 张哲, 等. 丁基苯酞对H2O2诱导下视网膜色素上皮细胞凋亡的保护作用[J]. 中华眼底病杂志, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.Xing XL, Huang LY, Zhang Z, et al. Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.
|
21. |
Xing X, Huang L, Lv Y, et al. DL-3-n-butylphthalide protected retinal Müller cells dysfunction from oxidative stress[J]. Curr Eye Res, 2019, 44(10): 1112-1120. DOI: 10.1080/02713683.2019.1624777.
|
22. |
Dong L, Nian H, Shao Y, et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy[J]. Cell Tissue Res, 2015, 360(2): 233-243. DOI: 10.1007/s00441-014-2104-5.
|
23. |
漆晨, 胡立颖, 王琼, 等. 聚嘧啶束结合蛋白相关剪接因子高表达对糖基化终末产物诱导下视网膜色素上皮细胞损伤的保护作用[J]. 中华眼底病杂志, 2020, 36(1): 46-52. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.011.Qi C, Hu LY, Wang Q, et al. Protective effect of high expression of polypyrimidine bundle binding protein related splicing factor on retinal pigment epithelial cell injury induced by advanced glycation end products[J]. Chin J Ocul Fundus Dis, 2020, 36(1): 46-52. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.011.
|
24. |
Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy[J]. J Mol Med (Berl), 2021, 99(2): 225-240. DOI: 10.1007/s00109-020-01995-8.
|
25. |
Heng LZ, Comyn O, Peto T, et al. Diabetic retinopathy. pathogenesis, clinical grading, management and future developments[J]. Diabet Med, 2013, 30(6): 640-650. DOI: 10.1111/dme.12089.
|
26. |
Roy S, Amin S, Roy S. Retinal fibrosis in diabetic retinopathy[J]. Exp Eye Res, 2016, 142: 71-75. DOI: 10.1016/j.exer.2015.04.004.
|
27. |
Gucciardo E, Loukovaara S, Korhonen A, et al. The microenvironment of proliferative diabetic retinopathy supports lymphatic neovascularization[J]. J Pathol, 2018, 245(2): 172-185. DOI: 10.1002/path.5070.
|
28. |
Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, et al. Role of Smac/DIABLO in cancer progression[J]. J Exp Clin Cancer Res, 2008, 27(1): 48. DOI: 10.1186/1756-9966-27-48.
|
29. |
Shintani M, Sangawa A, Yamao N, et al. Smac/DIABLO expression in human gastrointestinal carcinoma. Association with clinicopathological parameters and survivin expression[J]. Oncol Lett, 2014, 8(6): 2581-2586. DOI: 10.3892/ol.2014.2598.
|
30. |
Liu X, Jutooru I, Lei P, et al. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a. ZBTB10 in breast cancer[J]. Mol Cancer Ther, 2012, 11(7): 1421-1431. DOI: 10.1158/1535-7163.MCT-12-0026.
|
31. |
Lai Y, Zhang X, Zhang Z, et al. The microRNA-27a. ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin expression in ovarian epithelial cancer cells[J]. Int J Oncol, 2013, 42(2): 776-784. DOI: 10.3892/ijo.2012.1743.
|
32. |
Helmke C, Becker S, Strebhardt K. The role of Plk3 in oncogenesis[J]. Oncogene, 2016, 35(2): 135-147. DOI: 10.1038/onc.2015.105.
|
33. |
Wang Q, Xie S, Chen J, et al. Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity[J]. Mol Cell Biol, 2002, 22(10): 3450-3459. DOI: 10.1128/mcb.22.10.3450-3459.2002.
|
34. |
Xu D, Yao Y, Lu L, et al. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha[J]. J Biol Chem, 2010, 285(50): 38944-38950. DOI: 10.1074/jbc.M110.160325.
|
35. |
Xu D, Dai W, Li C. Polo-like kinase 3, hypoxic responses, and tumorigenesis[J]. Cell Cycle, 2017, 16(21): 2032-2036. DOI: 10.1080/15384101.2017.1373224.
|
36. |
Huang XP, Hou J, Shen XY, et al. MicroRNA-486-5p, which is downregulated in hepatocellular carcinoma, suppresses tumor growth by targeting PIK3R1[J]. FEBS J, 2015, 282(3): 579-594. DOI: 10.1111/febs.13167.
|
37. |
Ai X, Xiang L, Huang Z, et al. Overexpression of PIK3R1 promotes hepatocellular carcinoma progression[J]. Biol Res, 2018, 51(1): 52. DOI: 10.1186/s40659-018-0202-7.
|
38. |
Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression[J]. Mol Cancer, 2019, 18(1): 71. DOI: 10.1186/s12943-019-0969-3.
|
39. |
Du Y, Liu P, Zang W, et al. BTG3 upregulation induces cell apoptosis and suppresses invasion in esophageal adenocarcinoma[J]. Mol Cell Biochem, 2015, 404(1-2): 31-38. DOI: 10.1007/s11010-015-2363-9.
|
40. |
Lv C, Wang H, Tong Y, et al. The function of BTG3 in colorectal cancer cells and its possible signaling pathway[J]. J Cancer Res Clin Oncol, 2018, 144(2): 295-308. DOI: 10.1007/s00432-017-2561-9.
|
41. |
Majid S, Dar AA, Ahmad AE, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer[J]. Carcinogenesis, 2009, 30(4): 662-670. DOI: 10.1093/carcin/bgp042.
|