1. |
Mitamura Y, Mitamura-Aizawa S, Nagasawa T, et al. Diagnostic imaging in patients with retinitis pigmentosa[J]. J Med Invest, 2012, 59(1-2): 1-11. DOI: 10.2152/jmi.59.1.
|
2. |
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration[J/OL]. Front Immunol, 2019, 10: 1975[2019-08-20]. https://pubmed.ncbi.nlm.nih.gov/31481963/. DOI: 10.3389/fimmu.2019.01975.
|
3. |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: just bystander or target for therapy?[J]. Prog Retin Eye Res, 2015, 45: 30-57. DOI: 10.1016/j.preteyeres.2014.11.004.
|
4. |
Ramirez AI, de Hoz R, Salobrar-Garcia E, et al. The role of microglia in retinal neurodegeneration: Alzheimer's disease, Parkinson, and Glaucoma[J]. Front Aging Neurosci, 2017, 9: 214. DOI: 10.3389/fnagi.2017.00214.
|
5. |
Gupta N, Shyamasundar S, Patnala R, et al. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies[J]. Expert Opin Ther Targets, 2018, 22(9): 765-781. DOI: 10.1080/14728222.2018.1515917.
|
6. |
Bellver-Landete V, Bretheau F, Mailhot B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury[J]. Nat Commun, 2019, 10(1): 518. DOI: 10.1038/s41467-019-08446-0.
|
7. |
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35: 441-468. DOI: 10.1146/annurev-immunol-051116-052358.
|
8. |
Brown GC, Neher JJ. Microglial phagocytosis of live neurons[J]. Nat Rev Neurosci, 2014, 15(4): 209-216. DOI: 10.1038/nrn3710.
|
9. |
Tang Y, and Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181-1194. DOI: 10.1007/s12035-014-9070-5.
|
10. |
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665. DOI: 10.1111/bph.13139.
|
11. |
Vecino E, Rodriguez FD, Ruzafa N, et al. Glia-neuron interactions in the mammalian retina[J]. Prog Retin Eye Res, 2016, 51: 1-40. DOI: 10.1016/j.preteyeres.2015.06.003.
|
12. |
Wolf Y, Yona S, Kim KW, et al. Microglia, seen from the CX3CR1 angle[J]. Front Cell Neurosci, 2013, 7: 26. DOI: 10.3389/fncel.2013.00026.
|
13. |
Zabel MK, Zhao L, Zhang Y, et al. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa[J]. Glia, 2016, 64(9): 1479-1491. DOI: 10.1002/glia.23016.
|
14. |
Horie S, Robbie SJ, Liu J, et al. CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization[J/OL]. Sci Rep, 2013, 3: 3072[2013-10-30]. https://pubmed.ncbi.nlm.nih.gov/24170042/. DOI: 10.1038/srep03072.
|
15. |
Rashid K, Verhoyen M, Taiwo M, et al. Translocator protein (18 kDa) (TSPO) ligands activate Nrf2 signaling and attenuate inflammatory responses and oxidative stress in human retinal pigment epithelial cells[J]. Biochem Biophys Res Commun, 2020, 528(2): 261-268. DOI: 10.1016/j.bbrc.2020.05.114.
|
16. |
Madeira MH, Boia R, Santos PF, et al. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases[J/OL]. Mediators Inflamm, 2015, 2015: 673090[2015-03-22]. https://pubmed.ncbi.nlm.nih.gov/25873768/. DOI: 10.1155/2015/673090.
|
17. |
Wang M, Ma W, Zhao L, et al. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina[J]. J Neuroinflammation, 2011, 8: 173. DOI: 10.1186/1742-2094-8-173.
|
18. |
Wang M, Wang X, Zhao L, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina[J]. J Neurosci, 2014, 34: 3793-3806. DOI: 10.1523/JNEUROSCI.3153-13.2014.
|
19. |
Di Pierdomenico J, García-Ayuso D, Agudo-Barriuso M, et al. Role of microglial cells in photoreceptor degeneration[J]. Neural Regen Res, 2019, 14(7): 1186-1190. DOI: 10.4103/1673-5374.251204.
|
20. |
Dannhausen K, Rashid K, Langmann T. Microglia analysis in retinal degeneration mouse models[J]. Methods Mol Biol, 2018, 1753: 159-166. DOI: 10.1007/978-1-4939-7720-8_10.
|
21. |
Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease[J]. Annu Rev Vis Sci, 2018, 4: 45-77. DOI: 10.1146/annurev-vision-091517-034425.
|
22. |
Yoshida N, Ikeda Y, Notomi S, et al. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa[J/OL]. Ophthalmology, 2013, 120(1): e5-12[2012-09-15]. https://pubmed.ncbi.nlm.nih.gov/22986110/. DOI: 10.1016/j.ophtha.2012.07.008.
|
23. |
Blank T, Goldmann T, Koch M, et al. Early microglia activation precedes photoreceptor degeneration in a mouse model of CNGB1-linked retinitis pigmentosa[J/OL]. Front Immunol, 2018, 8: 1930[2018-01-05]. https://pubmed.ncbi.nlm.nih.gov/29354133/. DOI: 10.3389/fimmu.2017.01930.
|
24. |
Zhao L, Zabel MK, Wang X, et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration[J]. EMBO Mol Med, 2015, 7(9): 1179-1197. DOI: 10.15252/emmm.201505298.
|
25. |
Wang NK, Lai CC, Liu CH, et al. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome[J]. Dis Model Mech, 2013, 6(5): 1113-1122. DOI: 10.1242/dmm.012112.
|
26. |
Aredo B, Zhang K, Chen X, et al. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice[J]. J Neuroinflammation, 2015, 12: 6. DOI: 10.1186/s12974-014-0221-4.
|
27. |
Langmann T, Ebert S, Walczak Y, et al. Induction of early growth response-1 mediates microglia activation in vitro but is dispensable in vivo[J]. Neuromolecular Med, 2009, 11(2): 87-96. DOI: 10.1007/s12017-009-8061-6.
|
28. |
Zhang S, Zhang S, Zhu G, et al. Müller cell regulated microglial activation and migration in rats with N-Methyl-N-Nitrosourea-induced retinal degeneration[J]. Front Neurosci, 2018, 12: 890. DOI: 10.3389/fnins.2018.00890.
|
29. |
Di Pierdomenico J, García-Ayuso D, Pinilla I, et al. Early events in retinal degeneration caused by rhodopsin mutation or pigment epithelium malfunction: differences and similarities[J]. Front Neuroanat, 2017, 11: 14. DOI: 10.3389/fnana.2017.00014.
|
30. |
Guo C, Otani A, Oishi A, et al. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa[J]. Exp Eye Res, 2012, 104: 39-47. DOI: 10.1016/j.exer.2012.08.013.
|
31. |
Kohno H, Chen Y, Kevany BM, et al. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal[J]. J Biol Chem, 2013, 288: 15326-15341. DOI: 10.1074/jbc.M112.448712.
|
32. |
Scholz R, Caramoy A, Bhuckory M, et al. Targeting translocator protein (18kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration[J]. J Neuroinflammation, 2015, 12: 201. DOI: 10.1186/s12974-015-0422-5.
|
33. |
Mages K, Grassmann F, Jägle H, et a1. The agonistic TSPO 1igand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia[J]. J Neuroinflammation, 2019, 16(11): 43. DOI: 10.1186/s12974-019-1424-5.
|
34. |
Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic[J]. Br J Pharmacol, 2013, 169(2): 337-352. DOI: 10.1111/bph.12139.
|
35. |
Halder SK, Matsunaga H, Ishii KJ, et al. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia[J]. J Neurochem, 2013, 126(2): 243-260. DOI: 10.1111/jnc.12262.
|
36. |
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia[J/OL]. Cell Death Dis, 2013, 4(3): e525[2013-03-07]. https://pubmed.ncbi.nlm.nih.gov/23470532/. DOI: 10.1038/cddis.2013.54.
|
37. |
Scholz R, Sobotka M, Caramoy A. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration[J]. J Neuroinflammation, 2015, 12: 209. DOI: 10.1186/s12974-015-0431-4.
|
38. |
Peng B, Xiao J, Wang K, et al. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa[J]. J Neurosci, 2014, 34(24): 8139-8150. DOI: 10.1523/JNEUROSCI.5200-13.2014.
|
39. |
Cukras CA, Petrou P, Chew EY, et al. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase Ⅰ/Ⅱ clinical study[J]. Invest Opthalmol Vis Sci, 2012, 53(7): 3865-3874. DOI: 10.1167/iovs.11-9413.
|
40. |
Baumgartner WA, Baumgartner AM. Rationale for an experimental treatment of retinitis pigmentosa: 140-month test of hypothesis with one patient[J]. Med Hypotheses, 2013, 81(4): 720-728. DOI: 10.1016/j.mehy.2013.07.036.
|
41. |
Karali M, Guadagnino I, Marrocco E, et al. AAV-miR-204 protects from retinal degeneration by attenuation of microglia activation and photoreceptor cell death[J]. Mol Ther Nucleic Acids, 2020, 19: 144-156. DOI: 10.1016/j.omtn.2019.11.005.
|
42. |
Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration[J]. J Clin Invest, 2020, 130(8): 4360-4369. DOI: 10.1172/JCI136160.
|
43. |
Tanaka M, Kuse Y, Nakamura S, et al. Potential effects of progranulin and granulins against retinal photoreceptor cell degeneration[J]. Mol Vis, 2019, 25: 902-911.
|
44. |
Zhou T, Huang Z, Zhu X, et al. Alpha-1 antitrces M1 microglia-mediated neuroinflammation in retinal degeneration[J/OL]. Front Immunol, 2018, 9: 1202[2018-05-30]. https://pubmed.ncbi.nlm.nih.gov/29899745/. DOI: 10.3389/fimmu.2018.01202.
|
45. |
Wang Y, Yin Z, Gao L, et al. Curcumin delays retinal degeneration by regulating microglia activation in the retina of rd 1 mice[J]. Cell Physiol Biochem, 2017, 44(2): 479-493. DOI: 10.1159/000485085.
|
46. |
Chumsakul O, Wakayama K, Tsuhako A, et al. Apigenin regulates activation of microglia and counteracts retinal degeneration[J]. J Ocul Pharmacol Ther, 2020, 36(5): 311-319. DOI: 10.1089/jop.2019.0163.
|