1. |
Francis BA, Varma R, Chopra V, et al. Intraocular pressure, central corneal thickness, and prevalence of open-angle glaucoma: the los angeles latino eye study[J]. Am J Ophthalmol, 2008, 146(5): 741-746. DOI: 10.1016/j.ajo.2008.05.048.
|
2. |
Baek SU, Kim YK, Ha A, et al. Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma[J/OL]. PLoS One, 2019, 14(4): e0215684[2019-04-26]. https://pubmed.ncbi.nlm.nih.gov/31026291/. DOI: 10.1371/journal.pone.0215684.
|
3. |
Jeon SJ, Shin DY, Park HL, et al. Association of retinal blood flow with progression of visual field in glaucoma[J/OL]. Sci Rep, 2019, 9(1): 16813[2019-11-14]. https://pubmed.ncbi.nlm.nih.gov/31728047/. DOI: 10.1038/s41598-019-53354-4.
|
4. |
Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma[J]. Ophthalmology, 2016, 123(12): 2498-2508. DOI: 10.1016/j.ophtha.2016.08.041.
|
5. |
Karabulut M, Karabulut S, Sül S, et al. Optic nerve head microvascular changes after phacoemulsification surgery[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(12): 2729-2733. DOI: 10.1007/s00417-019-04473-1.
|
6. |
Weinreb RN, Khaw PT. Primary open-angle glaucoma[J]. Lancet, 2004, 363(9422): 1711-1720. DOI: 10.1016/S0140-6736(04)16257-0.
|
7. |
Quigley HA. Glaucoma[J]. Lancet, 2011, 377(9774): 1367-1377. DOI: 10.1016/S0140-6736(10)61423-7.
|
8. |
Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study[J]. Ophthalmology, 2010, 117(2): 259-266. DOI: 10.1016/j.ophtha.2009.06.058.
|
9. |
Baxter GM, Williamson TH. Color doppler imaging of the eye: normal ranges, reproducibility, and observer variation[J]. J Ultrasound Med, 1995, 14(2): 91-96. DOI: 10.7863/jum.1995.14.2.91.
|
10. |
Marjanović I, Marjanović M, Martinez A, et al. Relationship between blood pressure and retrobulbar blood flow in dipper and nondipper primary open-angle glaucoma patients[J]. Eur J Ophthalmol, 2016, 26(6): 588-593. DOI: 10.5301/ejo.5000789.
|
11. |
Dimitrova G, Kato S. Color doppler imaging of retinal diseases[J]. Surv Ophthalmol, 2010, 55(3): 193-214. DOI: 10.1016/j.survophthal.2009.06.010.
|
12. |
Liu Y, Jassim F, Braaf B, et al. Diagnostic capability of 3D peripapillary retinal volume for glaucoma using optical coherence tomography customized software[J]. J Glaucoma, 2019, 28(8): 708-717. DOI: 10.1097/IJG.0000000000001291.
|
13. |
Rao HL, Pradhan ZS, Weinreb RN, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma[J]. Am J Ophthalmol, 2016, 171: 75-83. DOI: 10.1016/j.ajo.2016.08.030.
|
14. |
Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[J]. Ophthalmology, 2016, 123(12): 2509-2518. DOI: 10.1016/j.ophtha.2016.09.002.
|
15. |
Lee EJ, Kim S, Hwang S, et al. Microvascular compromise develops following nerve fiber layer damage in normal-tension glaucoma without choroidal vasculature involvement[J]. J Glaucoma, 2017, 26(3): 216-222. DOI: 10.1097/IJG.0000000000000587.
|
16. |
Ichiyama Y, Minamikawa T, Niwa Y, et al. Capillary dropout at the retinal nerve fiber layer defect in glaucoma: an optical coherence tomography angiography study[J/OL]. J Glaucoma, 2017, 26(4): e142-e145[2017-04-26]. https://pubmed.ncbi.nlm.nih.gov/27599177/. DOI: 10.1097/IJG.0000000000000540.
|
17. |
Scripsema NK, Garcia PM, Bavier RD, et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT611-OCT620. DOI: 10.1167/iovs.15-18945.
|
18. |
Bojikian KD, Chen CL, Wen JC, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography[J/OL]. PLoS One, 2016, 11(5): e0154691[2016-05-05]. https://pubmed.ncbi.nlm.nih.gov/27149261/. DOI: 10.1371/journal.pone.0154691.
|
19. |
Kumar RS, Anegondi N, Chandapura RS, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6079-6088. DOI: 10.1167/iovs.16-19984.
|
20. |
Akil H, Huang AS, Francis BA, et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes[J/OL]. PLoS One, 2017, 12(2): e0170476[2017-02-02]. https://pubmed.ncbi.nlm.nih.gov/28152070/. DOI: 10.1371/journal.pone.0170476.
|
21. |
Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT451-OCT459. DOI: 10.1167/iovs.15-18944.
|
22. |
Moghimi S, Zangwill LM, Penteado RC, et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma[J]. Ophthalmology, 2018, 125(11): 1720-1728. DOI: 10.1016/j.ophtha.2018.05.006.
|
23. |
Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads[J]. Int J Ophthalmol, 2018, 11(5): 835-843. DOI: 10.18240/ijo.2018.05.20.
|
24. |
Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma[J]. Br J Ophthalmol, 2017, 101(8): 1066-1070. DOI: 10.1136/bjophthalmol-2016-309377.
|
25. |
Venugopal JP, Rao HL, Weinreb RN, et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes[J]. Br J Ophthalmol, 2018, 102(3): 352-357. DOI: 10.1136/bjophthalmol-2017-310637.
|
26. |
Matsunaga D, Yi J, Puliafito CA, et al. OCT angiography in healthy human subjects[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(6): 510-515. DOI: 10.3928/23258160-20141118-04.
|
27. |
Zhou Y, Zhou M, Wang Y, et al. Short-term changes in retinal vasculature and layer thickness after phacoemulsification surgery[J]. Curr Eye Res, 2020, 45(1): 31-37. DOI: 10.1080/02713683.2019.1649703.
|
28. |
Andrade De Jesus D, Sánchez Brea L, Barbosa Breda J, et al. OCTA multilayer and multisector peripapillary mcrovascular modeling for diagnosing and staging of glaucoma[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 58[2020-11-05]. https://pubmed.ncbi.nlm.nih.gov/33224631/. DOI: 10.1167/tvst.9.2.58.
|
29. |
Gharbiya M, Cruciani F, Cuozzo G, et al. Macular thickness changes evaluated with spectral domain optical coherence tomography after uncomplicated phacoemulsification[J]. Eye (Lond), 2013, 27(5): 605-611. DOI: 10.1038/eye.2013.28.
|
30. |
Zhao Z, Wen W, Jiang C, et al. Changes in macular vasculature after uncomplicated phacoemulsification surgery: optical coherence tomography angiography study[J]. J Cataract Refract Surg, 2018, 44(4): 453-458. DOI: 10.1016/j.jcrs.2018.02.014.
|
31. |
Gulkilik G, Kocabora S, Taskapili M, et al. Cystoid macular edema after phacoemulsification: risk factors and effect on visual acuity[J]. Can J Ophthalmol, 2006, 41(6): 699-703. DOI: 10.3129/i06-062.
|
32. |
Xu H, Chen M, Forrester JV, et al. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 249-255. DOI: 10.1167/iovs.10-6001.
|
33. |
Sánchez-Cano A, Pablo LE, Larrosa JM, et al. The effect of phacoemulsification cataract surgery on polarimetry and tomography measurements for glaucoma diagnosis[J]. J Glaucoma, 2010, 19(7): 468-474. DOI: 10.1097/IJG.0b013e3181c4aed8.
|
34. |
Cheng CS, Natividad MG, Earnest A, et al. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography[J]. Clin Exp Ophthalmol, 2011, 39(3): 215-221. DOI: 10.1111/j.1442-9071.2010.02460.x.
|
35. |
López-Caballero C, Contreras I, Muñoz-Negrete FJ, et al. Comparación con tonometría de aplanación[Rebound tonometry in a clinical setting. Comparison with applanation tonometry][J]. Arch Soc Esp Oftalmol, 2007, 82(5): 273-278. DOI: 10.4321/s0365-66912007000500005.
|
36. |
Hayreh SS. Neovascular glaucoma[J]. Prog Retin Eye Res, 2007, 26(5): 470-485. DOI: 10.1016/j.preteyeres.2007.06.001.
|