1. |
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes[J]. Cell Biol Toxicol, 2020, 36(2): 145-164. DOI: 10.1007/s10565-019-09496-2.
|
2. |
Huang Z, Zhou T, Sun X, et al. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation[J]. Cell Death Differ, 2017, 25(1): 180-189. DOI: 10.1038/cdd.2017.141.
|
3. |
Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[J]. Exp Eye Res, 2019, 181: 316-324. DOI: 10.1016/j.exer.2018.08.019.
|
4. |
Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture[J]. Nat Cell Biol, 2020, 22(9): 1042-1048. DOI: 10.1038/s41556-020-0565-1.
|
5. |
Yang M, So KF, Lam WC, et al. Novel programmed cell death as therapeutic targets in age-related macular degeneration?[J/OL]. Int J Mol Sci, 2020, 21(19): 7279[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/33019767/. DOI: 10.3390/ijms21197279.
|
6. |
Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6): 1401-1411. DOI: 10.1016/j.immuni.2019.04.003.
|
7. |
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. DOI: 10.1016/j.tibs.2016.10.004.
|
8. |
Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death[J]. J Mol Biol, 2018, 430(18 Pt B): 3068-3080. DOI: 10.1016/j.jmb.2018.07.002.
|
9. |
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. DOI: 10.1111/imr.12534.
|
10. |
Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways[J]. Arch Biochem Biophys, 2019, 670: 4-14. DOI: 10.1016/j.abb.2019.02.008.
|
11. |
Kuriakose T, Kanneganti TD. Pyroptosis in antiviral immunity[J/OL]. Curr Top Microbiol Immunol, 2019, 25: E1(2021-04-09)[2019-12-25]. https://pubmed.ncbi.nlm.nih.gov/31875268/. DOI: 10.1007/82_2019_189. [published online ahead of print].
|
12. |
Gan J, Huang M, Lan G, et al. High glucose induces the loss of retinal pericytes partly via NLRP3-Caspase-1-GSDMD-mediated pyroptosis[J/OL]. Biomed Res Int, 2020, 2020: 4510628[2020-04-23]. https://pubmed.ncbi.nlm.nih.gov/32420343/. DOI: 10.1155/2020/4510628.
|
13. |
Yu X, Ma X, Lin W, et al. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342-3p targeting of CASP1 in diabetic retinopathy[J/OL]. Exp Eye Res, 2021, 202: 108300[2021-01-01]. https://pubmed.ncbi.nlm.nih.gov/33065089/. DOI: 10.1016/j.exer.2020.108300.
|
14. |
Huang L, You J, Yao Y, et al. High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling[J]. Arq Bras Oftalmol, 2021, 84(1): 67-73. DOI: 10.5935/0004-2749.20210010.
|
15. |
Chaurasia SS, Lim RR, Parikh BH, et al. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy[J/OL]. Sci Rep, 2018, 8(1): 2847[2018-02-12]. https://pubmed.ncbi.nlm.nih.gov/29434227/. DOI: 10.1038/s41598-018-21198-z.
|
16. |
Chen W, Zhao M, Zhao S, et al. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline[J]. Inflamm Res, 2017, 66(2): 157-166. DOI: 10.1007/s00011-016-1002-6.
|
17. |
Devi TS, Yumnamcha T, Yao F, et al. TXNIP mediates high glucose-induced mitophagic flux and lysosome enlargement in human retinal pigment epithelial cells[J/OL]. Biol Open, 2019, 8(4): bio038521[2019-04-25]. https://pubmed.ncbi.nlm.nih.gov/31023645/. DOI: 10.1242/bio.038521.
|
18. |
Zha X, Xi X, Fan X, et al. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8[J]. Aging (Albany NY), 2020, 12(9): 8137-8150. DOI: 10.18632/aging.103130.
|
19. |
Chen H, Zhang X, Liao N, et al. Enhanced expression of NLRP3 inflammasome-related inflammation in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 978-985. DOI: 10.1167/iovs.17-22816.
|
20. |
Liu Q, Zhang F, Zhang X, et al. Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation[J]. Mol Cell Biochem, 2018, 445(1-2): 105-115. DOI: 10.1007/s11010-017-3256-x.
|
21. |
Shi H, Zhang Z, Wang X, et al. Inhibition of autophagy induces IL-1β release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress[J]. Biochem Biophys Res Commun, 2015, 463(4): 1071-1076. DOI: 10.1016/j.bbrc.2015.06.060.
|
22. |
Li Y, Liu C, Wan XS, et al. NLRP1 deficiency attenuates diabetic retinopathy (DR) in mice through suppressing inflammation response[J]. Biochem Biophys Res Commun, 2018, 501(2): 351-357. DOI: 10.1016/j.bbrc.2018.03.148.
|
23. |
Gu C, Draga D, Zhou C, et al. MiR-590-3p inhibits pyroptosis in diabetic retinopathy by targeting NLRP1 and inactivating the NOX4 signaling pathway[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4215-4223. DOI: 10.1167/iovs.19-27825.
|
24. |
Li W, Jin LY, Cui YB, et al. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17-3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1[J/OL]. Int Immunopharmacol, 2021, 90: 107010[2021-01-01]. https://pubmed.ncbi.nlm.nih.gov/33333415/. DOI: 10.1016/j.intimp.2020.107010.
|
25. |
Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. DOI: 10.1167/iovs.18-25617.
|
26. |
Kerur N, Fukuda S, Banerjee D, et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration[J]. Nat Med, 2018, 24(1): 50-61. DOI: 10.1038/nm.4450.
|
27. |
Zhang W, Ma Y, Zhang Y, et al. Photo-oxidative blue-light stimulation in retinal pigment epithelium cells promotes exosome secretion and increases the activity of the NLRP3 inflammasome[J]. Curr Eye Res, 2019, 44(1): 67-75. DOI: 10.1080/02713683.2018.1518458.
|
28. |
He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism[J]. Int J Ophthalmol, 2018, 11(4): 559-566. DOI: 10.18240/ijo.2018.04.04.
|
29. |
Liao Y, Zhang H, He D, et al. Retinal pigment epithelium cell death is associated with NLRP3 inflammasome activation by all-trans retinal[J]. Invest Opthalmol Vis Sci, 2019, 60(8): 3034-3045. DOI: 10.1167/iovs.18-26360.
|
30. |
Gao J, Cui JZ, To E, et al. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye[J]. J Neuroinflammation, 2018, 15(1): 15. DOI: 10.1186/s12974-018-1062-3.
|
31. |
Somasundaran S, Constable IJ, Mellough CB, et al. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms[J]. Clin Exp Ophthalmol, 2020, 48(8): 1043-1056. DOI: 10.1111/ceo.13834.
|
32. |
Wooff Y, Fernando N, Wong JHC, et al. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration[J/OL]. Sci Rep, 2020, 10(1): 2263[2020-02-10]. https://pubmed.ncbi.nlm.nih.gov/32041990/. DOI: 10.1038/s41598-020-58849-z.
|
33. |
Malsy J, Alvarado AC, Lamontagne JO, et al. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization[J/OL]. Elife, 2020, 9: e60194[2020-12-11]. https://pubmed.ncbi.nlm.nih.gov/33305736/. DOI: 10.7554/eLife.60194.
|
34. |
Brandstetter C, Patt J, Holz FG, et al. Inflammasome priming increases retinal pigment epithelial cell susceptibility to lipofuscin phototoxicity by changing the cell death mechanism from apoptosis to pyroptosis[J]. J Photochem Photobiol B, 2016, 161: 177-183. DOI: 10.1016/j.jphotobiol.2016.05.018.
|
35. |
Sun HJ, Jin XM, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2): 28-38. DOI: 10.1159/000502614.
|
36. |
Yang M, So KF, Lo ACY, et al. The effect of lycium barbarum polysaccharides on pyroptosis-associated amyloid β1-40 oligomers-induced adult retinal pigment epithelium 19 cell damage[J/OL]. Int J Mol Sci, 2020, 21(13): 4658[2020-06-30]. https://pubmed.ncbi.nlm.nih.gov/32629957/. DOI: 10.3390/ijms21134658.
|
37. |
Mao X, Pan T, Shen H, et al. The rescue effect of mesenchymal stem cell on sodium iodate-induced retinal pigment epithelial cell death through deactivation of NF-κB-mediated NLRP3 inflammasome[J]. Biomed Pharmacother, 2018, 103: 517-523. DOI: 10.1016/j.biopha.2018.04.038.
|
38. |
Appelbaum T, Santana E, Aguirre GD. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration[J/OL]. PLoS One, 2017, 12(5): e0177224[2017-05-09]. https://pubmed.ncbi.nlm.nih.gov/28486508/. DOI: 10.1371/journal.pone.0177224.
|
39. |
Viringipurampeer IA, Metcalfe AL, Bashar AE, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration[J]. Hum Mol Genet, 2016, 25(8): 1501-1516. DOI: 10.1093/hmg/ddw029.
|
40. |
Yumnamcha T, Devi TS, Singh LP. Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells: implications of retinal neurodegenerative diseases[J/OL]. Front Neurosci, 2019, 13: 1065[2019-10-10]. https://pubmed.ncbi.nlm.nih.gov/31649499/. DOI: 10.3389/fnins.2019.01065.
|
41. |
Wang S, Ji LY, Li L, et al. Oxidative stress, autophagy and pyroptosis in the neovascularization of oxygeninduced retinopathy in mice[J]. Mol Med Rep, 2019, 19(2): 927-934. DOI: 10.3892/mmr.2018.9759.
|
42. |
Sui A, Chen X, Shen J, et al. Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1beta/IL-18 activation pattern in an oxygen-induced ischemic retinopathy mouse model[J]. Cell Death Dis, 2020, 11(10): 901. DOI: 10.1038/s41419-020-03076-7.
|
43. |
Fry LE, Fahy E, Chrysostomou V, et al. The coma in glaucoma: retinal ganglion cell dysfunction and recovery[J]. Prog Retin Eye Res, 2018, 65: 77-92. DOI: 10.1016/j.preteyeres.2018.04.001.
|
44. |
Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener, 2020, 15(1): 26. DOI: 10.1186/s13024-020-00372-w.
|
45. |
Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017, 390(10108): 2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.
|
46. |
Pronin A, Pham D, An W, et al. Inflammasome activation induces pyroptosis in the retina exposed to ocular hypertension injury[J]. Front Mol Neurosci, 2019, 12: 36. DOI: 10.3389/fnmol.2019.00036.
|
47. |
李菲, 蒋楠, 朱颖婷, 等. 小胶质细胞参与视网膜神经节细胞死亡机制的实验研究[J]. 中华眼科杂志, 2020, 56(1): 32-40. DOI: 10.3760/cma.j.issn.0412-4081.2020.01.010.Li F, Jiang N, Zhu YT, et al. Mechanism of microglia promoting retinal ganglion cell death in vitro[J]. Chin J Ophthalmol, 2020, 56(1): 32-40. DOI: 10.3760/cma.j.issn.0412-4081.2020.01.010.
|
48. |
Zhang Y, Huang Y, Guo L, et al. Melatonin alleviates pyroptosis of retinal neurons following acute intraocular hypertension[J]. CNS Neurol Disord Drug Targets, 2021, 20(3): 285-297. DOI: 10.2174/1871527319666201012125149.
|
49. |
Gong Y, Cao X, Gong L, et al. Sulforaphane alleviates retinal ganglion cell death and inflammation by suppressing NLRP3 inflammasome activation in a rat model of retinal ischemia/reperfusion injury[J/OL]. Int J Immunopathol Pharmacol, 2019, 33: 2058738419861777[2019-01-01]. https://pubmed.ncbi.nlm.nih.gov/31266422/. DOI: 10.1177/2058738419861777.
|
50. |
Guan L, Li C, Zhang Y, et al. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome[J/OL]. Life Sci, 2020, 256: 117935[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32526286/. DOI: 10.1016/j.lfs.2020.117935.
|
51. |
Lin C, Wu F, Zheng T, et al. Kaempferol attenuates retinal ganglion cell death by suppressing NLRP1/NLRP3 inflammasomes and caspase-8 via JNK and NF-κB pathways in acute glaucoma[J]. Eye (Lond), 2019, 33(5): 777-784. DOI: 10.1038/s41433-018-0318-6.
|
52. |
Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160. DOI: 10.1016/j.biomaterials.2019.01.016.
|
53. |
Su W, Li Z, Jia Y, et al. MicroRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma[J]. J Mol Cell Biol, 2017, 9(4): 289-301. DOI: 10.1093/jmcb/mjx022.
|
54. |
Ji S, Xiao J, Liu J, et al. Human umbilical cord mesenchymal stem cells attenuate ocular hypertension-induced retinal neuroinflammation via toll-like receptor 4 pathway[J/OL]. Stem Cells Int, 2019, 2019: 9274585[2019-10-15]. https://pubmed.ncbi.nlm.nih.gov/31737079/. DOI: 10.1155/2019/ 9274585.
|