1. |
Gu Y, Ke G, Wang L, et al. Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray[J]. Ophthalmic Res, 2017, 58(3): 176-184. DOI: 10.1159/000479156.
|
2. |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. DOI: 10.1038/nature11928.
|
3. |
He M, Wang W, Yu H, et al. Comparison of expression profiling of circular RNAs in vitreous humour between diabetic retinopathy and non-diabetes mellitus patients[J]. Acta Diabetol, 2020, 57(4): 479-489. DOI: 10.1007/s00592-019-01448-w.
|
4. |
Chen J, Yang X, Liu R, et al. Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-kappaB pathway[J/OL]. Cell Death Dis, 2020, 11(9): 788[2020-09-23]. https://pubmed.ncbi.nlm.nih.gov/32968054/. DOI: 10.1038/s41419-020-02989-7.
|
5. |
Hsiao KY, Lin YC, Gupta SK, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis[J]. Cancer Res, 2017, 77(9): 2339-2350. DOI: 10.1158/0008-5472.CAN-16-1883.
|
6. |
Lukiw WJ. Circular RNA (circRNA) in Alzheimer's disease (AD)[J/OL]. Front Genet, 2013, 4: 307[2013-12-13]. https://pubmed.ncbi.nlm.nih.gov/24427167/. DOI: 10.3389/fgene.2013.00307.
|
7. |
Shen S, Yao T, Xu Y, et al. CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc[J]. Mol Cancer, 2020, 19(1): 151. DOI: 10.1186/s12943-020-01269-4.
|
8. |
Zeng Z, Xia L, Fan S, et al. Circular RNA circMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation[J]. Circulation, 2021, 143(4): 354-371. DOI: 10.1161/CIRCULATIONAHA.120.049715.
|
9. |
Wawrzyniak O, Zarebska Z, Rolle K, et al. Circular and long non-coding RNAs and their role in ophthalmologic diseases[J]. Acta Biochim Pol, 2018, 65(4): 497-508. DOI: 10.18388/abp.2018_2639.
|
10. |
Zhang C, Hu J, Yu Y. CircRNA is a rising star in researches of ocular diseases[J/OL]. Front Cell Dev Biol, 2020, 8: 850[2020-09-03]. https://pubmed.ncbi.nlm.nih.gov/33015046/. DOI: 10.3389/fcell.2020.00850.
|
11. |
Guo N, Liu XF, Pant OP, et al. Circular RNAs: novel promising biomarkers in ocular diseases[J]. Int J Med Sci, 2019, 16(4): 513-518. DOI: 10.7150/ijms.29750.
|
12. |
Sun LF, Zhang B, Chen XJ, et al. Circular RNAs in human and vertebrate neural retinas[J]. RNA Biol, 2019, 16(6): 821-829. DOI: 10.1080/15476286.2019.1591034.
|
13. |
Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6500-6509. DOI: 10.1167/iovs.17-22698.
|
14. |
Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877. DOI: 10.7150/thno.19353.
|
15. |
Liu G, Zhou S, Li X, et al. Inhibition of hsa_circ_0002570 suppresses high-glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis[J]. Cell Stress Chaperones, 2020, 25(5): 767-777. DOI: 10.1007/s12192-020-01111-2.
|
16. |
Shan K, Liu C, Liu BH, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation, 2017, 136(17): 1629-1642. DOI: 10.1161/CIRCULATIONAHA.117.029004.
|
17. |
Wu Z, Liu B, Ma Y, et al. Discovery and validation of hsa_circ_0001953 as a potential biomarker for proliferative diabetic retinopathy in human blood[J]. Acta Ophthalmol, 2021, 99(3): 306-313. DOI: 10.1111/aos.14585.
|
18. |
Kusuhara S, Fukushima Y, Ogura S, et al. Pathophysiology of diabetic retinopathy: the old and the new[J]. Diabetes Metab J, 2018, 42(5): 364-376. DOI: 10.4093/dmj.2018.0182.
|
19. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
|
20. |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI: 10.1038/nature11993.
|
21. |
Zhu K, Hu X, Chen H, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI[J]. EBioMedicine, 2019, 49: 341-353. DOI: 10.1016/j.ebiom.2019.10.004.
|
22. |
Zou J, Liu KC, Wang WP, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy[J/OL]. Life Sci, 2020, 256: 117888[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32497630/. DOI: 10.1016/j.lfs.2020.117888.
|
23. |
Geevarghese A, Herman IM. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies[J]. Transl Res, 2014, 163(4): 296-306. DOI: 10.1016/j.trsl.2014.01.011.
|
24. |
Ferland-McCollough D, Slater S, Richard J, et al. Pericytes, an overlooked player in vascular pathobiology[J]. Pharmacol Ther, 2017, 171: 30-42. DOI: 10.1016/j.pharmthera.2016.11.008.
|
25. |
Jiang Q, Liu C, Li CP, et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction[J]. J Clin Invest, 2020, 130(7): 3833-3847. DOI: 10.1172/JCI123353.
|
26. |
Liu C, Ge HM, Liu BH, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci USA, 2019, 116(15): 7455-7464. DOI: 10.1073/pnas.1814874116.
|
27. |
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy[J/OL]. Prog Retin Eye Res, 2021, 83: 100919[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33188897/. DOI: 10.1016/j.preteyeres.2020.100919.
|
28. |
Li Y, Cheng T, Wan C, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J/OL]. Gene, 2020, 747: 144653[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259630/. DOI: 10.1016/j.gene.2020.144653.
|
29. |
Sun H, Kang X. hsa_circ_0041795 contributes to human retinal pigment epithelial cells (ARPE 19) injury induced by high glucose via sponging miR-646 and activating VEGFC[J/OL]. Gene, 2020, 747: 144654[2020-07-15]. https://pubmed.ncbi.nlm.nih.gov/32259632/. DOI: 10.1016/j.gene.2020.144654.
|
30. |
Zhou L, Li FF, Wang SM. Circ-ITCH restrains the expression of MMP-2, MMP-9 and TNF-alpha in diabetic retinopathy by inhibiting miR-22[J/OL]. Exp Mol Pathol, 2021, 118: 104594[2020-12-09]. https://pubmed.ncbi.nlm.nih.gov/33309614/. DOI: 10.1016/j.yexmp.2020.104594.
|
31. |
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110. DOI: 10.3390/ijms19010110.
|
32. |
Zhang Y, Liu Q, Liao Q. CircHIPK3: a promising cancer-related circular RNA[J]. Am J Transl Res, 2020, 12(10): 6694-6704.
|
33. |
Li Y, Ge YZ, Xu L, et al. Circular RNA ITCH: a novel tumor suppressor in multiple cancers[J/OL]. Life Sci, 2020, 254: 117176[2019-12-18]. https://pubmed.ncbi.nlm.nih.gov/31843532/. DOI: 10.1016/j.lfs.2019.117176.
|
34. |
Deng Y, Li S, Li S, et al. CircPDE4B inhibits retinal pathological angiogenesis via promoting degradation of HIF-1alpha though targeting miR-181c[J]. IUBMB Life, 2020, 72(9): 1920-1929. DOI: 10.1002/iub.2307.
|