1. |
Tombran-Tink J, Johnson LV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells[J]. Invest Ophthalmol Vis Sci, 1989, 30(8): 1700-1707.
|
2. |
Steele FR, Chader GJ, Johnson LV, et al. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family[J]. Proc Natl Acad Sci USA, 1993, 90(4): 1526-1530. DOI: 10.1073/pnas.90.4.1526.
|
3. |
Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis[J]. Science, 1999, 285(5425): 245-248. DOI: 10.1126/science.285.5425.245.
|
4. |
Zhang SX, Wang JJ, Gao G, et al. Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor[J]. FASEB J, 2006, 20(2): 323-325. DOI: 10.1096/fj.05-4313fje.
|
5. |
Brown SD, Twells RC, Hey PJ, et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family[J]. Biochem Biophys Res Commun, 1998, 248(3): 879-888. DOI: 10.1006/bbrc.1998.9061.
|
6. |
Hey PJ, Twells RC, Phillips MS, et al. Cloning of a novel member of the low-density lipoprotein receptor family[J]. Gene, 1998, 216(1): 103-111. DOI: 10.1016/s0378-1119(98)00311-4.
|
7. |
Wang ZM, Luo JQ, Xu LY, et al. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases[J]. Pharmacogenomics J, 2018, 18(3): 351-358. DOI: 10.1038/tpj.2017.28.
|
8. |
Nie X, Wei X, Ma H, et al. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications[J]. J Cell Mol Med, 2021, 25(14): 6479-6495. DOI: 10.1111/jcmm.16663.
|
9. |
Kang S. Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities[J]. Hum Genet, 2020, 139(4): 447-459. DOI: 10.1007/s00439-020-02124-8.
|
10. |
Park K, Lee K, Zhang B, et al. Identification of a novel inhibitor of the canonical Wnt pathway[J]. Mol Cell Biol, 2011, 31(14): 3038-3051. DOI: 10.1128/MCB.01211-10.
|
11. |
Chen Y, Hu Y, Zhou T, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models[J]. Am J Pathol, 2009, 175(6): 2676-2685. DOI: 10.2353/ajpath.2009.080945.
|
12. |
Zhou T, Hu Y, Chen Y, et al. The pathogenic role of the canonical Wnt pathway in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2010, 51(9): 4371-4379. DOI: 10.1167/iovs.09-4278.
|
13. |
Lee K, Hu Y, Ding L, et al. Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy[J]. Diabetes, 2012, 61(11): 2948-2957. DOI: 10.2337/db11-0300.
|
14. |
Zhang B, Zhou KK, Ma JX. Inhibition of connective tissue growth factor overexpression in diabetic retinopathy by SERPINA3K via blocking the WNT/beta-catenin pathway[J]. Diabetes, 2010, 59(7): 1809-1816. DOI: 10.2337/db09-1056.
|
15. |
Zuercher J, Fritzsche M, Feil S, et al. Norrin stimulates cell proliferation in the superficial retinal vascular plexus and is pivotal for the recruitment of mural cells[J]. Hum Mol Genet, 2012, 21(12): 2619-2630. DOI: 10.1093/hmg/dds087.
|
16. |
Chen J, Stahl A, Krah NM, et al. Wnt signaling mediates pathological vascular growth in proliferative retinopathy[J]. Circulation, 2011, 124(17): 1871-1881. DOI: 10.1161/CIRCULATIONAHA.111.040337.
|
17. |
Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase[J]. Science, 2004, 306(5700): 1383-1386. DOI: 10.1126/science.1100747.
|
18. |
Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities[J]. J Biol Chem, 2004, 279(47): 48968-48975. DOI: 10.1074/jbc.M407841200.
|
19. |
Villena JA, Roy S, Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis[J]. J Biol Chem, 2004, 279(45): 47066-47075. DOI: 10.1074/jbc.M403855200.
|
20. |
Al-Zoughbi W, Pichler M, Gorkiewicz G, et al. Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia[J]. Oncotarget, 2016, 7(23): 33832-33840. DOI: 10.18632/oncotarget.9418.
|
21. |
Notari L, Baladron V, Aroca-Aguilar JD, et al. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor[J]. J Biol Chem, 2006, 281(49): 38022-38037. DOI: 10.1074/jbc.M600353200.
|
22. |
Alberdi E, Aymerich MS, Becerra SP. Binding of pigment epithelium-derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons. Evidence for a PEDF receptor[J]. J Biol Chem, 1999, 274(44): 31605-31612. DOI: 10.1074/jbc.274.44.31605.
|
23. |
Desjardin JT, Becerra SP, Subramanian P. Searching for alternatively spliced variants of phospholipase domain-containing 2 (Pnpla2), a novel gene in the retina[J]. J Clin Exp Ophthalmol, 2013, 4(5): 295. DOI: 10.4172/2155-9570.1000295.
|
24. |
Subramanian P, Notario PM, Becerra SP. Pigment epithelium-derived factor receptor (PEDF-R): a plasma membrane-linked phospholipase with PEDF binding affinity[J]. Adv Exp Med Biol, 2010, 664: 29-37. DOI: 10.1007/978-1-4419-1399-9_4.
|
25. |
Schreiber R, Xie H, Schweiger M. Of mice and men: the physiological role of adipose triglyceride lipase (ATGL)[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(6): 880-899. DOI: 10.1016/j.bbalip.2018.10.008.
|
26. |
Schreiber R, Hofer P, Taschler U, et al. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity[J]. Proc Natl Acad Sci USA, 2015, 112(45): 13850-13855. DOI: 10.1073/pnas.1516004112.
|
27. |
Pesapane A, Di Giovanni C, Rossi FW, et al. Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion[J]. Oncotarget, 2015, 6(20): 18116-18133. DOI: 10.18632/oncotarget.4016.
|
28. |
Chung C, Doll JA, Gattu AK, et al. Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL)[J]. J Hepatol, 2008, 48(3): 471-478. DOI: 10.1016/j.jhep.2007.10.012.
|
29. |
Borg ML, Andrews ZB, Duh EJ, et al. Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase[J]. Diabetes, 2011, 60(5): 1458-1466. DOI: 10.2337/db10-0845.
|
30. |
Niyogi S, Ghosh M, Adak M, et al. PEDF promotes nuclear degradation of ATGL through COP1[J]. Biochem Biophys Res Commun, 2019, 512(4): 806-811. DOI: 10.1016/j.bbrc.2019.03.111.
|
31. |
Yang Z, Sun J, Ji H, et al. Pigment epithelium-derived factor improves TNFα-induced hepatic steatosis in grass carp (Ctenopharyngodon idella)[J]. Dev Comp Immunol, 2017, 71: 8-17. DOI: 10.1016/j.dci.2017.01.016.
|
32. |
Zhang H, Sun T, Jiang X, et al. PEDF and PEDF-derived peptide 44mer stimulate cardiac triglyceride degradation via ATGL[J]. J Transl Med, 2015, 13: 68. DOI: 10.1186/s12967-015-0432-1.
|
33. |
Hirsch J, Johnson CL, Nelius T, et al. PEDF inhibits IL8 production in prostate cancer cells through PEDF receptor/phospholipase A2 and regulation of NFκB and PPARγ[J]. Cytokine, 2011, 55(2): 202-210. DOI: 10.1016/j.cyto.2011.04.010.
|
34. |
Aurora AB, Biyashev D, Mirochnik Y, et al. NF-kappaB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement[J]. Blood, 2010, 116(3): 475-484. DOI: 10.1182/blood-2009-07-232132.
|
35. |
DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein[J]. Biol Rev Camb Philos Soc, 2016, 91(2): 288-310. DOI: 10.1111/brv.12170.
|
36. |
Pesapane A, Ragno P, Selleri C, et al. Recent advances in the function of the 67 kDa laminin receptor and its targeting for personalized therapy in cancer[J]. Curr Pharm Des, 2017, 23(32): 4745-4757. DOI: 10.2174/1381612823666170710125332.
|
37. |
Sheibani N, Wang S, Darjatmoko SR, et al. Novel anti-angiogenic PEDF-derived small peptides mitigate choroidal neovascularization[J/OL]. Exp Eye Res, 2019, 188: 107798[2019-09-11]. https://pubmed.ncbi.nlm.nih.gov/31520600/. DOI: 10.1016/j.exer.2019.107798.
|
38. |
Sheibani N, Zaitoun IS, Wang S, et al. Inhibition of retinal neovascularization by a PEDF-derived nonapeptide in newborn mice subjected to oxygen-induced ischemic retinopathy[J/OL]. Exp Eye Res, 2020, 195: 108030[2020-04-06]. https://pubmed.ncbi.nlm.nih.gov/32272114/. DOI: 10.1016/j.exer.2020.108030.
|
39. |
Bernard A, Gao-Li J, Franco CA, et al. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor[J]. J Biol Chem, 2009, 284(16): 10480-10490. DOI: 10.1074/jbc.M809259200.
|
40. |
Gong Q, Qiu S, Li S, et al. Proapoptotic PEDF functional peptides inhibit prostate tumor growth-a mechanistic study[J]. Biochem Pharmacol, 2014, 92(3): 425-437. DOI: 10.1016/j.bcp.2014.09.012.
|
41. |
Carson-Walter EB, Watkins DN, Nanda A, et al. Cell surface tumor endothelial markers are conserved in mice and humans[J]. Cancer Res, 2001, 61(18): 6649-6655.
|
42. |
Lee HK, Seo IA, Park HK, et al. Identification of the basement membrane protein nidogen as a candidate ligand for tumor endothelial marker 7 in vitro and in vivo[J]. FEBS Lett, 2006, 580(9): 2253-2257. DOI: 10.1016/j.febslet.2006.03.033.
|
43. |
Nanda A, Buckhaults P, Seaman S, et al. Identification of a binding partner for the endothelial cell surface proteins TEM7 and TEM7R[J]. Cancer Res, 2004, 64(23): 8507-8511. DOI: 10.1158/0008-5472.CAN-04-2716.
|
44. |
Beaty RM, Edwards JB, Boon K, et al. PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium[J]. J Neurooncol, 2007, 81(3): 241-248. DOI: 10.1007/s11060-006-9227-9.
|
45. |
Cheng G, Zhong M, Kawaguchi R, et al. Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF[J/OL]. Elife, 2014, 3: e05401[2014-12-23]. https://pubmed.ncbi.nlm.nih.gov/25535841/. DOI: 10.7554/eLife.05401.
|
46. |
Nirody JA, Budin I, Rangamani P. ATP synthase: evolution, energetics, and membrane interactions[J/OL]. J Gen Physiol, 2020, 152(11): e201912475[2020-11-02]. https://pubmed.ncbi.nlm.nih.gov/32966553/. DOI: 10.1085/jgp.201912475.
|
47. |
Champagne E, Martinez LO, Collet X, et al. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions[J]. Curr Opin Lipidol, 2006, 17(3): 279-284. DOI: 10.1097/01.mol.0000226120.27931.76.
|
48. |
Notari L, Arakaki N, Mueller D, et al. Pigment epithelium-derived factor binds to cell-surface F(1)-ATP synthase[J]. FEBS J, 2010, 277(9): 2192-2205. DOI: 10.1111/j.1742-4658.2010.07641.x.
|
49. |
Qiu F, Zhang H, Yuan Y, et al. A decrease of ATP production steered by PEDF in cardiomyocytes with oxygen-glucose deprivation is associated with an AMPK-dependent degradation pathway[J]. Int J Cardiol, 2018, 257: 262-271. DOI: 10.1016/j.ijcard.2018.01.034.
|