1. |
The Diabetic Retinopathy Study Research Group. Indications for photocoagulation treatment of diabetic retinopathy: Diabetic Retinopathy Study Report no. 14[J]. Int Ophthalmol Clin, 1987, 27(4): 239-253. DOI: 10.1097/00004397-198702740-00004.
|
2. |
Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9[J]. Ophthalmology, 1991, 98(5 Suppl): S766-785.
|
3. |
Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255.
|
4. |
Dorin G. Subthreshold and micropulse diode laser photocoagulation[J]. Semin Ophthalmol, 2003, 18(3): 147-153. DOI: 10.1076/soph.18.3.147.29812.
|
5. |
Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders[J]. Adv Ther, 2017, 34(7): 1528-1555. DOI: 10.1007/s12325-017-0559-y.
|
6. |
Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J/OL]. J Ophthalmol, 2015, 2015: 729792[2015-11-30]. https://pubmed.ncbi.nlm.nih.gov/26697211/. DOI: 10.1155/2015/729792.
|
7. |
Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
|
8. |
Zhou L, Chong V, Lai K, et al. A pilot prospective study of 577-nm yellow subthreshold micropulse laser treatment with two different power settings for acute central serous chorioretinopathy[J]. Lasers Med Sci, 2019, 34(7): 1345-1351. DOI: 10.1007/s10103-019-02721-8.
|
9. |
Zhou L, Lai K, Jin L, et al. Subthreshold micropulse laser vs. conventional laser for central serous chorioretinopathy: a randomized controlled clinical trial[J/OL]. Front Med (Lausanne), 2021, 8: 682264[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34336888/. DOI: 10.3389/fmed.2021.682264.
|
10. |
Sun Z, Huang Y, Nie C, et al. Efficacy and safety of subthreshold micropulse laser compared with threshold conventional laser in central serous chorioretinopathy[J]. Eye (Lond), 2020, 34(9): 1592-1599. DOI: 10.1038/s41433-019-0692-8.
|
11. |
van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. DOI: 10.1016/j.ophtha.2018.04.021.
|
12. |
Inagaki K, Ohkoshi K, Ohde S, et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561-577-nm) direct photocoagulation for diabetic macular edema[J]. Jpn J Ophthalmol, 2015, 59(1): 21-28. DOI: 10.1007/s10384-014-0361-1.
|
13. |
Joondeph BC, Joondeph HC, Blair NP. Retinal macroaneurysms treated with the yellow dye laser[J]. Retina, 1989, 9(3): 187-192. DOI: 10.1097/00006982-198909030-00005.
|
14. |
Citirik M. The impact of central foveal thickness on the efficacy of subthreshold micropulse yellow laser photocoagulation in diabetic macular edema[J]. Lasers Med Sci, 2019, 34(5): 907-912. DOI: 10.1007/s10103-018-2672-9.
|
15. |
Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801. DOI: 10.1016/j.ophtha.2011.12.039.
|
16. |
Muqit MM, Marcellino GR, Henson DB, et al. Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy: the Manchester Pascal Study[J]. Arch Ophthalmol, 2010, 128(5): 525-533. DOI: 10.1001/archophthalmol.2010.60.
|
17. |
Huang CX, Lai KB, Zhou LJ, et al. Long-term effects of pattern scan laser pan-retinal photocoagulation on diabetic retinopathy in Chinese patients: a retrospective study[J]. Int J Ophthalmol, 2020, 13(2): 239-245. DOI: 10.18240/ijo.2020.02.06.
|
18. |
Muqit MM, Marcellino GR, Gray JC, et al. Pain responses of pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2[J]. Br J Ophthalmol, 2010, 94(11): 1493-1498. DOI: 10.1136/bjo.2009.176677.
|
19. |
Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser[J]. Retina, 2010, 30(3): 452-458. DOI: 10.1097/IAE.0b013e3181c70127.
|
20. |
Velez-Montoya R, Guerrero-Naranjo JL, Gonzalez-Mijares CC, et al. Pattern scan laser photocoagulation: safety and complications, experience after 1301 consecutive cases[J]. Br J Ophthalmol, 2010, 94(6): 720-724. DOI: 10.1136/bjo.2009.164996.
|
21. |
Kernt M, Cheuteu R, Vounotrypidis E, et al. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®)[J/OL]. Acta Ophthalmol, 2011, 89(8): e662-e664[2010-10-14]. https://pubmed.ncbi.nlm.nih.gov/20946326/. DOI: 10.1111/j.1755-3768.2010.02017.x.
|
22. |
Chhablani J, Mathai A, Rani P, et al. Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3432-3438. DOI: 10.1167/iovs.14-13936.
|
23. |
Ober MD, Kernt M, Cortes MA, et al. Time required for navigated macular laser photocoagulation treatment with the Navilas[J]. Graefe's Arch Clin Exp Ophthalmol, 2013, 251(4): 1049-1053. DOI: 10.1007/s00417-012-2119-0.
|
24. |
Chen H, Pan X, Yang J, et al. Application of 5G technology to conduct real-time teleretinal laser photocoagulation for the treatment of diabetic retinopathy[J/OL]. JAMA Ophthalmol, 2021, 2021: E1[2021-07-08]. https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2781796. DOI:10.1001/jamaophthalmol.2021.2312. [published online ahead of print].
|
25. |
Heier JS, Korobelnik JF, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies[J]. Ophthalmology, 2016, 123(11): 2376-2385. DOI: 10.1016/j.ophtha.2016.07.032.
|
26. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Retinal vein occlusions preferred practice pattern®[J]. Ophthalmology, 2020, 127(2): P288-P320. DOI: 10.1016/j.ophtha.2019.09.029.
|
27. |
Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema[J]. Ophthalmology, 2013, 120(9): 1843-1851. DOI: 10.1016/j.ophtha.2013.02.018.
|
28. |
Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema[J]. Ophthalmology, 2011, 118(4): 615-625. DOI: 10.1016/j.ophtha.2011.01.031.
|
29. |
Schule G, Huttmann G, Framme C, et al. Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation[J]. J Biomed Opt, 2004, 9(1): 173-179. DOI: 10.1117/1.1627338.
|
30. |
Vessey KA, Ho T, Jobling AI, et al. Nanosecond laser treatment for age-related macular degeneration does not induce focal vision loss or new vessel growth in the retina[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 731-745. DOI: 10.1167/iovs.17-23098.
|
31. |
Guymer RH, Wu Z, Hodgson LAB, et al. Subthreshold nanosecond laser intervention in age-related macular degeneration: the LEAD randomized controlled clinical trial[J]. Ophthalmology, 2019, 126(6): 829-838. DOI: 10.1016/j.ophtha.2018.09.015.
|
32. |
Xu F, Xiang Y, Wan C, et al. Predicting subretinal fluid absorption with machine learning in patients with central serous chorioretinopathy[J/OL]. Ann Transl Med, 2021, 9(3): 242[2021-02-11]. https://pubmed.ncbi.nlm.nih.gov/33708869/. DOI: 10.21037/atm-20-1519.
|
33. |
Hanna V, Oakley J, Russakoff D, et al. Effects of subthreshold nanosecond laser therapy in age-related macular degeneration using artificial intelligence(STAR-AI Study)[J/OL]. PLoS One, 2021, 16(4): e0250609[2021-04-29]. https://pubmed.ncbi.nlm.nih.gov/33914797/. DOI: 10.1371/journal.pone.0250609.
|