1. |
George ND, Yates JR, Moore AT. X linked retinoschisis[J]. Br J Ophthalmol, 1995, 79(7): 697-702. DOI: 10.1136/bjo.79.7.697.
|
2. |
George ND, Yates JR, Moore AT. Clinical features in affected males with X-linked retinoschisis[J]. Arch Ophthalmol, 1996, 114(3): 274-280. DOI: 10.1001/archopht.1996.01100130270007.
|
3. |
Molday RS, Kellner U, Weber BH. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms[J]. Prog Retin Eye Res, 2012, 31(3): 195-212. DOI: 10.1016/j.preteyeres.2011.12.002.
|
4. |
Sikkink SK, Biswas S, Parry NR, et al. X-linked retinoschisis: an update[J]. J Med Genet, 2007, 44(4): 225-232. DOI: 10.1136/jmg.2006.047340.
|
5. |
Tsang SH, Sharma T. X-linked juvenile retinoschisis[J]. Adv Exp Med Biol, 2018, 1085: 43-48. DOI: 10.1007/978-3-319-95046-4_10.
|
6. |
Molday LL, Hicks D, Sauer CG, et al. Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells[J]. Invest Ophthalmol Vis Sci, 2001, 42(3): 816-825.
|
7. |
Tantri A, Vrabec TR, Cu-Unjieng A, et al. X-linked retinoschisis: a clinical and molecular genetic review[J]. Surv Ophthalmol, 2004, 49(2): 214-230. DOI: 10.1016/j.survophthal.2003.12.007.
|
8. |
Wang T, Zhou A, Waters CT, et al. Molecular pathology of X linked retinoschisis: mutations interfere with retinoschisin secretion and oligomerisation[J]. Br J Ophthalmol, 2006, 90(1): 81-86. DOI: 10.1136/bjo.2005.078048.
|
9. |
毛子清, 游志鹏. 先天性视网膜劈裂的研究进展[J]. 中国实用眼科杂志, 2016, 34(6): 526-530. DOI: 10.3760/cma.j.issn.1006-4443.2016.06.003.Mao ZQ, You ZP. Research progress of X-linked retinoschisis[J]. Chin J Pract Ophthalmo, 2016, 34(6): 526-530. DOI: 10.3760/cma.j.issn.1006-4443.2016.06.003.
|
10. |
Chen C, Xie Y, Sun T, et al. Clinical findings and RS1 genotype in 90 Chinese families with X-linked retinoschisis[J]. Mol Vis, 2020, 26: 291-298.
|
11. |
沈科炯, 沈吟. 遗传性视网膜疾病腺相关病毒载体基因治疗新进展[J]. 中华眼底病杂志, 2020, 36(3): 242-248. DOI: 10.3760/cma.j.cn511434-20190705-00214.Shen KJ, Shen Y. New advances in gene therapy with adenoviral vectors for inherited retinal diseases[J]. Chin J Ocul Fundus Dis, 2020, 36(3): 242-248. DOI: 10.3760/cma.j.cn511434-20190705-00214.
|
12. |
Rodrigues GA, Shalaev E, Karami TK, et al. Pharmaceutical development of AAV-based gene therapy products for the eye[J]. Pharm Res, 2018, 36(2): 29. DOI: 10.1007/s11095-018-2554-7.
|
13. |
蔡丹瑞, 沈吟. 腺相关病毒在视觉系统神经示踪及眼科治疗中的应用进展[J]. 医学综述, 2020, 26(22): 4440-4444. DOI: 10.3969/j.issn.1006-2084.2020.22.014.Cai DR, Shen Y. Application progress of adeno-associated virus in nerve tracing of visual dystem and ophthalmic treatment[J]. Medical Recapitulate, 2020, 26(22): 4440-4444. DOI: 10.3969/j.issn.1006-2084.2020.22.014.
|
14. |
Moore NA, Morral N, Ciulla TA, et al. Gene therapy for inherited retinal and optic nerve degenerations[J]. Expert Opin Biol Ther, 2018, 18(1): 37-49. DOI: 10.1080/14712598.2018.1389886.
|
15. |
Weber BH, Schrewe H, Molday LL, et al. Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6222-6227. DOI: 10.1073/pnas.092528599.
|
16. |
Zeng Y, Takada Y, Kjellstrom S, et al. RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis[J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3279-3285. DOI: 10.1167/iovs.04-0576.
|
17. |
Jablonski MM, Dalke C, Wang X, et al. An ENU-induced mutation in Rs1h causes disruption of retinal structure and function[J]. Mol Vis, 2005, 11: 569-581.
|
18. |
Bush RA, Wei LL, Sieving PA. Convergence of human genetics and animal studies: gene therapy for X-linked retinoschisis[J/OL]. Cold Spring Harb Perspect Med, 2015, 5(8): a017368[2015-07-22]. https://pubmed.ncbi.nlm.nih.gov/26101206/. DOI: 10.1101/cshperspect.a017368.
|
19. |
Marangoni D, Wu Z, Wiley HE, et al. Preclinical safety evaluation of a recombinant AAV8 vector for X-linked retinoschisis after intravitreal administration in rabbits[J]. Hum Gene Ther Clin Dev, 2014, 25(4): 202-211. DOI: 10.1089/humc.2014.067.
|
20. |
Marangoni D, Bush RA, Zeng Y, et al. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice[J/OL]. Mol Ther Methods Clin Dev, 2016, 5: 16011[2016-03-16]. https://pubmed.ncbi.nlm.nih.gov/27626041/. DOI: 10.1038/mtm.2016.11.
|
21. |
Ye GJ, Budzynski E, Sonnentag P, et al. Safety and biodistribution evaluation in cynomolgus macaques of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin[J]. Hum Gene Ther Clin Dev, 2015, 26(3): 165-176. DOI: 10.1089/humc.2015.076.
|
22. |
Ye GJ, Conlon T, Erger K, et al. Safety and biodistribution evaluation of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin, in RS1-deficient mice[J]. Hum Gene Ther Clin Dev, 2015, 26(3): 177-184. DOI: 10.1089/humc.2015.077.
|
23. |
Min SH, Molday LL, Seeliger MW, et al. Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis[J]. Mol Ther, 2005, 12(4): 644-651. DOI: 10.1016/j.ymthe.2005.06.002.
|
24. |
Kjellstrom S, Bush RA, Zeng Y, et al. Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2007, 48(8): 3837-3845. DOI: 10.1167/iovs.07-0203.
|
25. |
Takada Y, Vijayasarathy C, Zeng Y, et al. Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery[J]. Invest Ophthalmol Vis Sci, 2008, 49(8): 3677-3686. DOI: 10.1167/iovs.07-1071.
|
26. |
Park TK, Wu Z, Kjellstrom S, et al. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse[J]. Gene Ther, 2009, 16(7): 916-926. DOI: 10.1038/gt.2009.61.
|
27. |
Janssen A, Min SH, Molday LL, et al. Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse[J]. Mol Ther, 2008, 16(6): 1010-1017. DOI: 10.1038/mt.2008.57.
|
28. |
Byrne LC, Oztürk BE, Lee T, et al. Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h-/- mouse[J]. Gene Ther, 2014, 21(6): 585-592. DOI: 10.1038/gt.2014.31.
|
29. |
Ou J, Vijayasarathy C, Ziccardi L, et al. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer[J]. J Clin Invest, 2015, 125(7): 2891-2903. DOI: 10.1172/JCI81380.
|
30. |
Zeng Y, Petralia RS, Vijayasarathy C, et al. Retinal structure and gene therapy outcome in retinoschisin-deficient mice assessed by spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT277-287. DOI: 10.1167/iovs.15-18920.
|
31. |
Vijayasarathy C, Zeng Y, Brooks MJ, et al. Genetic rescue of X-linked retinoschisis mouse (Rs1(-/y)) retina induces quiescence of the retinal microglial inflammatory state following AAV8-RS1 gene transfer and identifies gene networks underlying retinal recovery[J]. Hum Gene Ther, 2020, 32(13-14): 667-681. DOI: 10.1089/hum.2020.213.
|
32. |
Cukras C, Wiley HE, Jeffrey BG, et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase Ⅰ/Ⅱa trial by intravitreal delivery[J]. Mol Ther, 2018, 26(9): 2282-2294. DOI: 10.1016/j.ymthe.2018.05.025.
|
33. |
Vijayasarathy C, Sardar Pasha SPB, Sieving PA. Of men and mice: human X-linked retinoschisis and fidelity in mouse modeling[J/OL]. Prog Retin Eye Res, 2021 2021: 100999[2021-08-11]. https://pubmed.ncbi.nlm.nih.gov/34390869/. DOI: 10.1016/j.preteyeres.2021.100999.
|
34. |
Ayton LN, Barnes N, Dagnelie G, et al. An update on retinal prostheses[J]. Clin Neurophysiol, 2020, 131(6): 1383-1398. DOI: 10.1016/j.clinph.2019.11.029.
|
35. |
Garanto A. RNA-based therapeutic strategies for inherited retinal dystrophies[J]. Adv Exp Med Biol, 2019, 1185: 71-77. DOI: 10.1007/978-3-030-27378-1_12.
|
36. |
Ziccardi L, Cordeddu V, Gaddini L, et al. Gene therapy in retinal dystrophies[J]. Int J Mol Sci, 2019, 20(22): 5722. DOI: 10.3390/ijms20225722.
|
37. |
Michalakis S, Gerhardt M, Rudolph G, et al. Gene therapy for inherited retinal disorders: update on clinical trials[J]. Klin Monbl Augenheilkd, 2021, 238(3): 272-281. DOI: 10.1055/a-1384-0818.
|
38. |
Vázquez-Domínguez I, Garanto A, Collin RWJ. Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges[J]. Genes (Basel), 2019, 10(9): 654. DOI: 10.3390/genes10090654.
|
39. |
Benati D, Patrizi C, Recchia A. Gene editing prospects for treating inherited retinal diseases[J]. J Med Genet, 2020, 57(7): 437-444. DOI: 10.1136/jmedgenet-2019-106473.
|
40. |
Afanasyeva TAV, Corral-Serrano JC, Garanto A, et al. A look into retinal organoids: methods, analytical techniques, and applications[J]. Cell Mol Life Sci, 2021, 78(19-20): 6505-6532. DOI: 10.1007/s00018-021-03917-4.
|
41. |
Artero Castro A, Rodríguez Jimenez FJ, Jendelova P, et al. Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: concise review[J]. Stem Cells, 2019, 37(12): 1496-1504. DOI: 10.1002/stem.3089.
|
42. |
Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2019, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003.
|
43. |
Ghezzi D. Translation of a photovoltaic retinal prosthesis[J]. Nat Biomed Eng, 2020, 4(2): 137-138. DOI: 10.1038/s41551-020-0520-2.
|