- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
Diabetic retinopathy (DR) is one of common and specific microvascular complications caused by diabetic mellitus, and remains a serious and common ocular complication leading preventable blindness. At present, the specific pathogenesis of DR is not completely clear, and many factors are involved in its occurrence and development. Adiponectin (APN) is an endogenous cytokine secreted by adipocytes. It is expressed in all layers of retina, especially in the outer layer (rods and cones). It is involved in regulating fatty acid oxidation and glucose metabolism by binding with specific receptors. In recent years, a lot of studies have found that APN can be involved in regulating blood glucose, inhibiting neovascularization, reducing inflammation, dilating blood vessels and improving vascular endothelial function. At present, the specific mechanism of APN in the occurrence and development of DR Remains to be determined. Further research on the level changes and the specific mechanism of action of APN in DR may help to identify the characteristic metabolic changes of DR, thus providing new biomarkers for the diagnosis of DR, while helping to promote the innovation of the treatment of DR.
Citation: Wu Xianjun, Zhou Qiong. Progress in the role of adiponectin in the pathogenesis of diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases, 2023, 39(8): 708-713. doi: 10.3760/cma.j.cn511434-20211101-00615 Copy
1. | Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): 942. DOI: 10.3390/ijms19040942. |
2. | 段文若, 赵涛, 丁元美, 等. 脂联素水平及脂联素基因多态性与糖尿病视网膜病变的关系[J]. 中国糖尿病杂志, 2008, 16(12): 715-717, 720. DOI: 10.3321/j.issn:1006-6187.2008.12.004.Duan WR, Zhao T, Ding YM, et al. Association of adiponectin gene polymorphism and serum adiponectin level with diabetic retinopathy[J]. Chin J Diabetes Mellitus, 2008, 16(12): 715-717, 720. DOI: 10.3321/j.issn:1006-6187.2008.12.004. |
3. | Yang HS, Choi YJ, Han HY, et al. Serum and aqueous humor adiponectin levels correlate with diabetic retinopathy development and progression[J/OL]. PLoS One, 2021, 16(11): e259683[2021-11-15]. https://europepmc.org/abstract/MED/34780524. DOI:10.1371/journal.pone.0259683. |
4. | De Rosa A, Monaco ML, Capasso M, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects[J]. Eur J Endocrinol, 2013, 169(1): 37-43. DOI: 10.1530/EJE-12-1039. |
5. | Howlader M, Sultana MI, Akter F, et al. Adiponectin gene polymorphisms associated with diabetes mellitus: a descriptive review[J/OL]. Heliyon, 2021, 7(8): e7851[2021-08-20]. https://linkinghub.elsevier.com/retrieve/pii/S2405-8440(21)01954-X. DOI:10.1016/j.heliyon.2021.e07851. |
6. | Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome[J]. J Clin Invest, 2006, 116(7): 1784-1792. DOI: 10.1172/JCI29126. |
7. | Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity?[J]. Mol Metab, 2013, 2(3): 133-141. DOI: 10.1016/j.molmet.2013.04.001. |
8. | Recinella L, Orlando G, Ferrante C, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases[J/OL]. Front Physiol, 2020, 11: 578966[2020-10-30]. https://europepmc.org/abstract/MED/33192583. DOI:10.3389/fphys.2020.578966. |
9. | Fu Z, Lofqvist CA, Shao Z, et al. Dietary omega-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin[J]. Am J Clin Nutr, 2015, 101(4): 879-888. DOI: 10.3945/ajcn.114.099291. |
10. | Fu Z, Sun Y, Cakir B, et al. Targeting neurovascular interaction in retinal disorders[J]. Int J Mol Sci, 2020, 21(4): 1503. DOI: 10.3390/ijms21041503. |
11. | Sulochana KN, Ge R. Developing antiangiogenic peptide drugs for angiogenesis-related diseases[J]. Curr Pharm Des, 2007, 13(20): 2074-2086. DOI: 10.2174/138161207781039715. |
12. | Omae T, Nagaoka T, Yoshida A. Relationship between retinal blood flow and serum adiponectin concentrations in patients with type 2 diabetes mellitus[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 4143-4149. DOI: 10.1167/iovs.15-16447. |
13. | Krause MP, Milne KJ, Hawke TJ. Adiponectin-consideration for its role in skeletal muscle health[J]. Int J Mol Sci, 2019, 20(7): 1528. DOI: 10.3390/ijms20071528. |
14. | 陈燕铭, 王一娜, 钟毅敏, 等. 2型糖尿病视网膜病变患者血清炎症因子和脂联素水平的变化[J]. 中国病理生理杂志, 2011, 27(6): 1154-1158. DOI: 10.3969/j.issn.1000-4718.2011.06.020.Chen YM, Wang YN, Zhong YM, et al. Serum levels of inflammatory factors and adiponectin in type 2 diabetic retinopathy patients[J]. Chin J Pathophysiol, 2011, 27(6): 1154-1158. DOI: 10.3969/j.issn.1000-4718.2011.06.020. |
15. | Fu Z, Liegl R, Wang Z, et al. Adiponectin mediates dietary omega-3 long-chain polyunsaturated fatty acid protection against choroidal neovascularization in mice[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3862-3870. DOI: 10.1167/iovs.17-21796. |
16. | Higuchi A, Ohashi K, Kihara S, et al. Adiponectin suppresses pathological microvessel formation in retina through modulation of tumor necrosis factor-alpha expression[J]. Circ Res, 2009, 104(9): 1058-1065. DOI: 10.1161/CIRCRESAHA.109.194506. |
17. | Longo M, Alrais M, Tamayo EH, et al. Vascular and metabolic profiles in offspring born to pregnant mice with metabolic syndrome treated with inositols[J]. Am J Obstet Gynecol, 2019, 220(3): 271-279. DOI: 10.1016/j.ajog.2018.11.1101. |
18. | Omae T, Nagaoka T, Tanano I, et al. Adiponectin-induced dilation of isolated porcine retinal arterioles via production of nitric oxide from endothelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4586-4594. DOI: 10.1167/iovs.13-11756. |
19. | Rodriguez AJ, Nunes VS, Mastronardi CA, et al. Association between circulating adipocytokine concentrations and microvascular complications in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of controlled cross-sectional studies[J]. J Diabetes Complications, 2016, 30(2): 357-367. DOI: 10.1016/j.jdiacomp.2015.11.004. |
20. | Hong SB, Lee JJ, Kim SH, et al. The effects of adiponectin and inflammatory cytokines on diabetic vascular complications in obese and non-obese patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2016, 111: 58-65. DOI: 10.1016/j.diabres.2015.10.017. |
21. | Costagliola C, Daniele A, Dell'Omo R, et al. Aqueous humor levels of vascular endothelial growth factor and adiponectin in patients with type 2 diabetes before and after intravitreal bevacizumab injection[J]. Exp Eye Res, 2013, 110: 50-54. DOI: 10.1016/j.exer.2013.02.004. |
22. | Kuo JZ, Guo X, Klein R, et al. Adiponectin, insulin sensitivity and diabetic retinopathy in latinos with type 2 diabetes[J]. J Clin Endocrinol Metab, 2015, 100(9): 3348-3355. DOI: 10.1210/jc.2015-1221. |
23. | Fukumura D, Ushiyama A, Duda DG, et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis[J]. Circ Res, 2003, 93(9): e88-e97. DOI: 10.1161/01.RES.0000099243.20096.FA. |
24. | Fang H, Judd RL. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3): 1031-1063. DOI: 10.1002/cphy.c170046. |
25. | Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls[J]. Horm Metab Res, 2000, 32(2): 47-50. DOI: 10.1055/s-2007-978586. |
26. | Cunha-Vaz J, Faria DAJ, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes[J]. Br J Ophthalmol, 1975, 59(11): 649-656. DOI: 10.1136/bjo.59.11.649. |
27. | Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30[J]. Nat Med, 2002, 8(7): 731-737. DOI: 10.1038/nm724. |
28. | Pu X, Chen D. Targeting adipokines in obesity-related tumors[J/OL]. Front Oncol, 2021, 11: 685923[2021-08-04]. https://europepmc.org/abstract/MED/34485124. DOI:10.3389/fonc.2021.685923. |
29. | Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30[J]. J Clin Invest, 2001, 108(12): 1875-1881. DOI: 10.1172/JCI14120. |
30. | Deepa SS, Zhou L, Ryu J, et al. APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway[J]. Mol Endocrinol, 2011, 25(10): 1773-1785. DOI: 10.1210/me.2011-0082. |
31. | Zhou L, Deepa SS, Etzler JC, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways[J]. J Biol Chem, 2009, 284(33): 22426-22435. DOI: 10.1074/jbc.M109.028357. |
32. | Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J]. Mol Cell, 2013, 49(6): 1167-1175. DOI: 10.1016/j.molcel.2013.01.035. |
33. | Gowans GJ, Hawley SA, Ross FA, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab, 2013, 18(4): 556-566. DOI: 10.1016/j.cmet.2013.08.019. |
34. | Xin X, Zhou L, Reyes CM, et al. APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway[J]. Am J Physiol Endocrinol Metab, 2011, 300(1): E103-E110. DOI: 10.1152/ajpendo.00427.2010. |
35. | Shafabakhsh R, Aghadavod E, Mobini M, et al. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy[J]. J Cell Physiol, 2019, 234(6): 7781-7787. DOI: 10.1002/jcp.27685. |
36. | Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. DOI: 10.1016/j.diabet.2019.04.002. |
37. | Stern J H, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk[J]. Cell Metab, 2016, 23(5): 770-784. DOI: 10.1016/j.cmet.2016.04.011. |
38. | Fu Z, Gong Y, Lofqvist C, et al. Review: adiponectin in retinopathy[J]. Biochim Biophys Acta, 2016, 1862(8): 1392-1400. DOI: 10.1016/j.bbadis.2016.05.002. |
39. | Brakenhielm E, Veitonmaki N, Cao R, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis[J]. Proc Natl Acad Sci USA, 2004, 101(8): 2476-2481. DOI: 10.1073/pnas.0308671100. |
40. | Palanisamy K, Nareshkumar RN, Sivagurunathan S, et al. Anti-angiogenic effect of adiponectin in human primary microvascular and macrovascular endothelial cells[J]. Microvasc Res, 2019, 122: 136-145. DOI: 10.1016/j.mvr.2018.08.002. |
41. | Li R, Du J, Yao Y, et al. Adiponectin inhibits high glucose-induced angiogenesis via inhibiting autophagy in RF/6A cells[J]. J Cell Physiol, 2019, 234(11): 20566-20576. DOI: 10.1002/jcp.28659. |
42. | Takemura Y, Ouchi N, Shibata R, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies[J]. J Clin Invest, 2007, 117(2): 375-386. DOI: 10.1172/JCI29709. |
43. | Wulster-Radcliffe MC, Ajuwon KM, Wang J, et al. Adiponectin differentially regulates cytokines in porcine macrophages[J]. Biochem Biophys Res Commun, 2004, 316(3): 924-929. DOI: 10.1016/j.bbrc.2004.02.130. |
44. | Yamaguchi N, Argueta JG, Masuhiro Y, et al. Adiponectin inhibits toll-like receptor family-induced signaling[J]. FEBS Lett, 2005, 579(30): 6821-6826. DOI: 10.1016/j.febslet.2005.11.019. |
45. | Park PH, Huang H, McMullen MR, et al. Suppression of lipopolysaccharide-stimulated tumor necrosis factor-alpha production by adiponectin is mediated by transcriptional and post-transcriptional mechanisms[J]. J Biol Chem, 2008, 283(40): 26850-26858. DOI: 10.1074/jbc.M802787200. |
46. | Fu Z, Lofqvist CA, Liegl R, et al. Photoreceptor glucose metabolism determines normal retinal vascular growth[J]. EMBO Mol Med, 2018, 10(1): 76-90. DOI: 10.15252/emmm.201707966. |
47. | Fu Z, Gong Y, Liegl R, et al. FGF21 administration suppresses retinal and choroidal neovascularization in mice[J]. Cell Rep, 2017, 18(7): 1606-1613. DOI: 10.1016/j.celrep.2017.01.014. |
48. | Krenning G, Moonen JR, Harmsen MC. Pleiotropism of adiponectin: inflammation, neovascularization, and fibrosis[J]. Circ Res, 2009, 104(9): 1029-1031. DOI: 10.1161/CIRCRESAHA.109.198044. |
49. | Kim Y, Lim JH, Kim MY, et al. The adiponectin receptor agonist adiporon ameliorates diabetic nephropathy in a model of type 2 diabetes[J]. J Am Soc Nephrol, 2018, 29(4): 1108-1127. DOI: 10.1681/ASN.2017060627. |
50. | Guo X, Zhou G, Guo M, et al. Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin Ⅱ[J]. Physiol Rep, 2014, 2(2): e230. DOI: 10.1002/phy2.230. |
51. | Palanisamy K, Raman R, Sulochana KN, et al. Adiponectin: a potential candidate for treating fibrosis in posterior segment of the eye[J]. Med Hypotheses, 2019, 123: 9-12. DOI: 10.1016/j.mehy.2018.12.005. |
52. | Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease[J]. Curr Opin Lipidol, 2003, 14(6): 561-566. DOI: 10.1097/00041433-200312000-00003. |
53. | Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis[J]. Curr Opin Lipidol, 2017, 28(4): 347-354. DOI: 10.1097/MOL.0000000000000431. |
54. | Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor[J]. Clin Chim Acta, 2007, 380(1-2): 24-30. DOI: 10.1016/j.cca.2007.01.026. |
55. | Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes[J]. Biochem Biophys Res Commun, 2004, 323(2): 630-635. DOI: 10.1016/j.bbrc.2004.08.145. |
56. | Wang Y, Fan L, Meng X, et al. Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(10): 1957-1965. DOI: 10.1007/s00417-016-3427-6. |
57. | Hui X, Feng T, Liu Q, et al. The FGF21-adiponectin axis in controlling energy and vascular homeostasis[J]. J Mol Cell Biol, 2016, 8(2): 110-119. DOI: 10.1093/jmcb/mjw013. |
58. | Bao L, Yin J, Gao W, et al. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway[J]. Br J Pharmacol, 2018, 175(16): 3379-3393. DOI: 10.1111/bph.14383. |
59. | Li H, Wu G, Fang Q, et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat[J]. Nat Commun, 2018, 9(1): 272. DOI: 10.1038/s41467-017-02677-9. |
60. | Fu Z, Wang Z, Liu CH, et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice[J]. Diabetes, 2018, 67(5): 974-985. DOI: 10.2337/db17-0830. |
61. | Nacci C, Tarquinio M, Montagnani M. Molecular and clinical aspects of endothelial dysfunction in diabetes[J]. Intern Emerg Med, 2009, 4(2): 107-116. DOI: 10.1007/s11739-009-0234-7. |
62. | Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction[J]. Cardiovasc Res, 2000, 47(3): 457-464. DOI: 10.1016/s0008-6363(00)00054-7. |
63. | Cheng KK, Lam KS, Wang Y, et al. Erratum. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007;56: 1387-1394[J]. Diabetes, 2016, 65(10): 3218. DOI: 10.2337/db16-er10a. |
64. | Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease - a 30th anniversary update[J]. Acta Physiol (Oxf), 2017, 219(1): 22-96. DOI: 10.1111/apha.12646. |
65. | Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy[J]. Prog Retin Eye Res, 2007, 26(3): 205-238. DOI: 10.1016/j.preteyeres.2007.01.004. |
66. | Tan KC, Xu A, Chow WS, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation[J]. J Clin Endocrinol Metab, 2004, 89(2): 765-769. DOI: 10.1210/jc.2003-031012. |
67. | Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4: 173. DOI: 10.3389/fimmu.2013.00173. |
68. | Chakravarthy U, Hayes RG, Stitt AW, et al. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products[J]. Diabetes, 1998, 47(6): 945-952. DOI: 10.2337/diabetes.47.6.945. |
69. | Kim J, Oh YS, Shinn SH. Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes[J]. Exp Eye Res, 2005, 81(1): 65-70. DOI: 10.1016/j.exer.2005.01.010. |
70. | 李奕平, 张瑛, 宋滇平, 等. 脂联素基因单倍型与汉族人群2型糖尿病的相关性研究[J]. 中国糖尿病杂志, 2011, 19(2): 101-104. DOI: 10.3969/j.issn.1006-6187.2011.02.005.Li YP, Zhang Y, Song DP, et al. Single nucleotide polymorphism haplotypes of adiponectin gene are associated with type 2 diabetes in Han population[J]. Chin J Diabetes Mellitus, 2011, 19(2): 101-104. DOI: 10.3969/j.issn.1006-6187.2011.02.005. |
71. | Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians[J]. Hum Mol Genet, 2002, 11(21): 2607-2614. DOI: 10.1093/hmg/11.21.2607. |
72. | 王大鹏, 王长义, 赵晓雯, 等. 脂联素基因T45G多态性与2型糖尿病关系的Meta分析[J]. 中国糖尿病杂志, 2010, 18(5): 338-341. DOI: 10.3969/j.issn.1006-6187.2010.05.006.Wang DP, Wang CY, Zhao XW, et al. Meta analysis of the relationship between adiponectin gene T45G polymorphisms and type 2 diabetes[J]. Chin J Diabetes Mellitus, 2010, 18(5): 338-341. DOI: 10.3969/j.issn.1006-6187.2010.05.006. |
73. | 陶丽妃, 邱一果, 雷博. 脂联素与视网膜血管性疾病的相关性[J]. 中华眼底病杂志, 2015, 31(2): 202-205. DOI: 10.3760/cma.j.issn.1005-1015.2015.02.028.Tao LF, Qiu YG, Lei B. Association of adiponectin with retinal vascular diseases[J]. Chin J Ocul Fundus Dis, 2015, 31(2): 202-205. DOI: 10.3760/cma.j.issn.1005-1015.2015.02.028. |
74. | Li Y, Wu QH, Jiao ML, et al. Gene-environment interaction between adiponectin gene polymorphisms and environmental factors on the risk of diabetic retinopathy[J]. J Diabetes Investig, 2015, 6(1): 56-66. DOI: 10.1111/jdi.12249. |
75. | Zietz B, Buechler C, Kobuch K, et al. Serum levels of adiponectin are associated with diabetic retinopathy and with adiponectin gene mutations in Caucasian patients with diabetes mellitus type 2[J]. Exp Clin Endocrinol Diabetes, 2008, 116(9): 532-536. DOI: 10.1055/s-2008-1058086. |
76. | Choe EY, Wang HJ, Kwon O, et al. Variants of the adiponectin gene and diabetic microvascular complications in patients with type 2 diabetes[J]. Metabolism, 2013, 62(5): 677-685. DOI: 10.1016/j.metabol.2012.11.005. |
- 1. Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): 942. DOI: 10.3390/ijms19040942.
- 2. 段文若, 赵涛, 丁元美, 等. 脂联素水平及脂联素基因多态性与糖尿病视网膜病变的关系[J]. 中国糖尿病杂志, 2008, 16(12): 715-717, 720. DOI: 10.3321/j.issn:1006-6187.2008.12.004.Duan WR, Zhao T, Ding YM, et al. Association of adiponectin gene polymorphism and serum adiponectin level with diabetic retinopathy[J]. Chin J Diabetes Mellitus, 2008, 16(12): 715-717, 720. DOI: 10.3321/j.issn:1006-6187.2008.12.004.
- 3. Yang HS, Choi YJ, Han HY, et al. Serum and aqueous humor adiponectin levels correlate with diabetic retinopathy development and progression[J/OL]. PLoS One, 2021, 16(11): e259683[2021-11-15]. https://europepmc.org/abstract/MED/34780524. DOI:10.1371/journal.pone.0259683.
- 4. De Rosa A, Monaco ML, Capasso M, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects[J]. Eur J Endocrinol, 2013, 169(1): 37-43. DOI: 10.1530/EJE-12-1039.
- 5. Howlader M, Sultana MI, Akter F, et al. Adiponectin gene polymorphisms associated with diabetes mellitus: a descriptive review[J/OL]. Heliyon, 2021, 7(8): e7851[2021-08-20]. https://linkinghub.elsevier.com/retrieve/pii/S2405-8440(21)01954-X. DOI:10.1016/j.heliyon.2021.e07851.
- 6. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome[J]. J Clin Invest, 2006, 116(7): 1784-1792. DOI: 10.1172/JCI29126.
- 7. Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity?[J]. Mol Metab, 2013, 2(3): 133-141. DOI: 10.1016/j.molmet.2013.04.001.
- 8. Recinella L, Orlando G, Ferrante C, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases[J/OL]. Front Physiol, 2020, 11: 578966[2020-10-30]. https://europepmc.org/abstract/MED/33192583. DOI:10.3389/fphys.2020.578966.
- 9. Fu Z, Lofqvist CA, Shao Z, et al. Dietary omega-3 polyunsaturated fatty acids decrease retinal neovascularization by adipose-endoplasmic reticulum stress reduction to increase adiponectin[J]. Am J Clin Nutr, 2015, 101(4): 879-888. DOI: 10.3945/ajcn.114.099291.
- 10. Fu Z, Sun Y, Cakir B, et al. Targeting neurovascular interaction in retinal disorders[J]. Int J Mol Sci, 2020, 21(4): 1503. DOI: 10.3390/ijms21041503.
- 11. Sulochana KN, Ge R. Developing antiangiogenic peptide drugs for angiogenesis-related diseases[J]. Curr Pharm Des, 2007, 13(20): 2074-2086. DOI: 10.2174/138161207781039715.
- 12. Omae T, Nagaoka T, Yoshida A. Relationship between retinal blood flow and serum adiponectin concentrations in patients with type 2 diabetes mellitus[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 4143-4149. DOI: 10.1167/iovs.15-16447.
- 13. Krause MP, Milne KJ, Hawke TJ. Adiponectin-consideration for its role in skeletal muscle health[J]. Int J Mol Sci, 2019, 20(7): 1528. DOI: 10.3390/ijms20071528.
- 14. 陈燕铭, 王一娜, 钟毅敏, 等. 2型糖尿病视网膜病变患者血清炎症因子和脂联素水平的变化[J]. 中国病理生理杂志, 2011, 27(6): 1154-1158. DOI: 10.3969/j.issn.1000-4718.2011.06.020.Chen YM, Wang YN, Zhong YM, et al. Serum levels of inflammatory factors and adiponectin in type 2 diabetic retinopathy patients[J]. Chin J Pathophysiol, 2011, 27(6): 1154-1158. DOI: 10.3969/j.issn.1000-4718.2011.06.020.
- 15. Fu Z, Liegl R, Wang Z, et al. Adiponectin mediates dietary omega-3 long-chain polyunsaturated fatty acid protection against choroidal neovascularization in mice[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3862-3870. DOI: 10.1167/iovs.17-21796.
- 16. Higuchi A, Ohashi K, Kihara S, et al. Adiponectin suppresses pathological microvessel formation in retina through modulation of tumor necrosis factor-alpha expression[J]. Circ Res, 2009, 104(9): 1058-1065. DOI: 10.1161/CIRCRESAHA.109.194506.
- 17. Longo M, Alrais M, Tamayo EH, et al. Vascular and metabolic profiles in offspring born to pregnant mice with metabolic syndrome treated with inositols[J]. Am J Obstet Gynecol, 2019, 220(3): 271-279. DOI: 10.1016/j.ajog.2018.11.1101.
- 18. Omae T, Nagaoka T, Tanano I, et al. Adiponectin-induced dilation of isolated porcine retinal arterioles via production of nitric oxide from endothelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4586-4594. DOI: 10.1167/iovs.13-11756.
- 19. Rodriguez AJ, Nunes VS, Mastronardi CA, et al. Association between circulating adipocytokine concentrations and microvascular complications in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of controlled cross-sectional studies[J]. J Diabetes Complications, 2016, 30(2): 357-367. DOI: 10.1016/j.jdiacomp.2015.11.004.
- 20. Hong SB, Lee JJ, Kim SH, et al. The effects of adiponectin and inflammatory cytokines on diabetic vascular complications in obese and non-obese patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2016, 111: 58-65. DOI: 10.1016/j.diabres.2015.10.017.
- 21. Costagliola C, Daniele A, Dell'Omo R, et al. Aqueous humor levels of vascular endothelial growth factor and adiponectin in patients with type 2 diabetes before and after intravitreal bevacizumab injection[J]. Exp Eye Res, 2013, 110: 50-54. DOI: 10.1016/j.exer.2013.02.004.
- 22. Kuo JZ, Guo X, Klein R, et al. Adiponectin, insulin sensitivity and diabetic retinopathy in latinos with type 2 diabetes[J]. J Clin Endocrinol Metab, 2015, 100(9): 3348-3355. DOI: 10.1210/jc.2015-1221.
- 23. Fukumura D, Ushiyama A, Duda DG, et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis[J]. Circ Res, 2003, 93(9): e88-e97. DOI: 10.1161/01.RES.0000099243.20096.FA.
- 24. Fang H, Judd RL. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3): 1031-1063. DOI: 10.1002/cphy.c170046.
- 25. Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls[J]. Horm Metab Res, 2000, 32(2): 47-50. DOI: 10.1055/s-2007-978586.
- 26. Cunha-Vaz J, Faria DAJ, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes[J]. Br J Ophthalmol, 1975, 59(11): 649-656. DOI: 10.1136/bjo.59.11.649.
- 27. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30[J]. Nat Med, 2002, 8(7): 731-737. DOI: 10.1038/nm724.
- 28. Pu X, Chen D. Targeting adipokines in obesity-related tumors[J/OL]. Front Oncol, 2021, 11: 685923[2021-08-04]. https://europepmc.org/abstract/MED/34485124. DOI:10.3389/fonc.2021.685923.
- 29. Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30[J]. J Clin Invest, 2001, 108(12): 1875-1881. DOI: 10.1172/JCI14120.
- 30. Deepa SS, Zhou L, Ryu J, et al. APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway[J]. Mol Endocrinol, 2011, 25(10): 1773-1785. DOI: 10.1210/me.2011-0082.
- 31. Zhou L, Deepa SS, Etzler JC, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways[J]. J Biol Chem, 2009, 284(33): 22426-22435. DOI: 10.1074/jbc.M109.028357.
- 32. Wu N, Zheng B, Shaywitz A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J]. Mol Cell, 2013, 49(6): 1167-1175. DOI: 10.1016/j.molcel.2013.01.035.
- 33. Gowans GJ, Hawley SA, Ross FA, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab, 2013, 18(4): 556-566. DOI: 10.1016/j.cmet.2013.08.019.
- 34. Xin X, Zhou L, Reyes CM, et al. APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway[J]. Am J Physiol Endocrinol Metab, 2011, 300(1): E103-E110. DOI: 10.1152/ajpendo.00427.2010.
- 35. Shafabakhsh R, Aghadavod E, Mobini M, et al. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy[J]. J Cell Physiol, 2019, 234(6): 7781-7787. DOI: 10.1002/jcp.27685.
- 36. Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. DOI: 10.1016/j.diabet.2019.04.002.
- 37. Stern J H, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk[J]. Cell Metab, 2016, 23(5): 770-784. DOI: 10.1016/j.cmet.2016.04.011.
- 38. Fu Z, Gong Y, Lofqvist C, et al. Review: adiponectin in retinopathy[J]. Biochim Biophys Acta, 2016, 1862(8): 1392-1400. DOI: 10.1016/j.bbadis.2016.05.002.
- 39. Brakenhielm E, Veitonmaki N, Cao R, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis[J]. Proc Natl Acad Sci USA, 2004, 101(8): 2476-2481. DOI: 10.1073/pnas.0308671100.
- 40. Palanisamy K, Nareshkumar RN, Sivagurunathan S, et al. Anti-angiogenic effect of adiponectin in human primary microvascular and macrovascular endothelial cells[J]. Microvasc Res, 2019, 122: 136-145. DOI: 10.1016/j.mvr.2018.08.002.
- 41. Li R, Du J, Yao Y, et al. Adiponectin inhibits high glucose-induced angiogenesis via inhibiting autophagy in RF/6A cells[J]. J Cell Physiol, 2019, 234(11): 20566-20576. DOI: 10.1002/jcp.28659.
- 42. Takemura Y, Ouchi N, Shibata R, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies[J]. J Clin Invest, 2007, 117(2): 375-386. DOI: 10.1172/JCI29709.
- 43. Wulster-Radcliffe MC, Ajuwon KM, Wang J, et al. Adiponectin differentially regulates cytokines in porcine macrophages[J]. Biochem Biophys Res Commun, 2004, 316(3): 924-929. DOI: 10.1016/j.bbrc.2004.02.130.
- 44. Yamaguchi N, Argueta JG, Masuhiro Y, et al. Adiponectin inhibits toll-like receptor family-induced signaling[J]. FEBS Lett, 2005, 579(30): 6821-6826. DOI: 10.1016/j.febslet.2005.11.019.
- 45. Park PH, Huang H, McMullen MR, et al. Suppression of lipopolysaccharide-stimulated tumor necrosis factor-alpha production by adiponectin is mediated by transcriptional and post-transcriptional mechanisms[J]. J Biol Chem, 2008, 283(40): 26850-26858. DOI: 10.1074/jbc.M802787200.
- 46. Fu Z, Lofqvist CA, Liegl R, et al. Photoreceptor glucose metabolism determines normal retinal vascular growth[J]. EMBO Mol Med, 2018, 10(1): 76-90. DOI: 10.15252/emmm.201707966.
- 47. Fu Z, Gong Y, Liegl R, et al. FGF21 administration suppresses retinal and choroidal neovascularization in mice[J]. Cell Rep, 2017, 18(7): 1606-1613. DOI: 10.1016/j.celrep.2017.01.014.
- 48. Krenning G, Moonen JR, Harmsen MC. Pleiotropism of adiponectin: inflammation, neovascularization, and fibrosis[J]. Circ Res, 2009, 104(9): 1029-1031. DOI: 10.1161/CIRCRESAHA.109.198044.
- 49. Kim Y, Lim JH, Kim MY, et al. The adiponectin receptor agonist adiporon ameliorates diabetic nephropathy in a model of type 2 diabetes[J]. J Am Soc Nephrol, 2018, 29(4): 1108-1127. DOI: 10.1681/ASN.2017060627.
- 50. Guo X, Zhou G, Guo M, et al. Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin Ⅱ[J]. Physiol Rep, 2014, 2(2): e230. DOI: 10.1002/phy2.230.
- 51. Palanisamy K, Raman R, Sulochana KN, et al. Adiponectin: a potential candidate for treating fibrosis in posterior segment of the eye[J]. Med Hypotheses, 2019, 123: 9-12. DOI: 10.1016/j.mehy.2018.12.005.
- 52. Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease[J]. Curr Opin Lipidol, 2003, 14(6): 561-566. DOI: 10.1097/00041433-200312000-00003.
- 53. Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis[J]. Curr Opin Lipidol, 2017, 28(4): 347-354. DOI: 10.1097/MOL.0000000000000431.
- 54. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor[J]. Clin Chim Acta, 2007, 380(1-2): 24-30. DOI: 10.1016/j.cca.2007.01.026.
- 55. Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes[J]. Biochem Biophys Res Commun, 2004, 323(2): 630-635. DOI: 10.1016/j.bbrc.2004.08.145.
- 56. Wang Y, Fan L, Meng X, et al. Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(10): 1957-1965. DOI: 10.1007/s00417-016-3427-6.
- 57. Hui X, Feng T, Liu Q, et al. The FGF21-adiponectin axis in controlling energy and vascular homeostasis[J]. J Mol Cell Biol, 2016, 8(2): 110-119. DOI: 10.1093/jmcb/mjw013.
- 58. Bao L, Yin J, Gao W, et al. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway[J]. Br J Pharmacol, 2018, 175(16): 3379-3393. DOI: 10.1111/bph.14383.
- 59. Li H, Wu G, Fang Q, et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat[J]. Nat Commun, 2018, 9(1): 272. DOI: 10.1038/s41467-017-02677-9.
- 60. Fu Z, Wang Z, Liu CH, et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice[J]. Diabetes, 2018, 67(5): 974-985. DOI: 10.2337/db17-0830.
- 61. Nacci C, Tarquinio M, Montagnani M. Molecular and clinical aspects of endothelial dysfunction in diabetes[J]. Intern Emerg Med, 2009, 4(2): 107-116. DOI: 10.1007/s11739-009-0234-7.
- 62. Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction[J]. Cardiovasc Res, 2000, 47(3): 457-464. DOI: 10.1016/s0008-6363(00)00054-7.
- 63. Cheng KK, Lam KS, Wang Y, et al. Erratum. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007;56: 1387-1394[J]. Diabetes, 2016, 65(10): 3218. DOI: 10.2337/db16-er10a.
- 64. Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease - a 30th anniversary update[J]. Acta Physiol (Oxf), 2017, 219(1): 22-96. DOI: 10.1111/apha.12646.
- 65. Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy[J]. Prog Retin Eye Res, 2007, 26(3): 205-238. DOI: 10.1016/j.preteyeres.2007.01.004.
- 66. Tan KC, Xu A, Chow WS, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation[J]. J Clin Endocrinol Metab, 2004, 89(2): 765-769. DOI: 10.1210/jc.2003-031012.
- 67. Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4: 173. DOI: 10.3389/fimmu.2013.00173.
- 68. Chakravarthy U, Hayes RG, Stitt AW, et al. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products[J]. Diabetes, 1998, 47(6): 945-952. DOI: 10.2337/diabetes.47.6.945.
- 69. Kim J, Oh YS, Shinn SH. Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes[J]. Exp Eye Res, 2005, 81(1): 65-70. DOI: 10.1016/j.exer.2005.01.010.
- 70. 李奕平, 张瑛, 宋滇平, 等. 脂联素基因单倍型与汉族人群2型糖尿病的相关性研究[J]. 中国糖尿病杂志, 2011, 19(2): 101-104. DOI: 10.3969/j.issn.1006-6187.2011.02.005.Li YP, Zhang Y, Song DP, et al. Single nucleotide polymorphism haplotypes of adiponectin gene are associated with type 2 diabetes in Han population[J]. Chin J Diabetes Mellitus, 2011, 19(2): 101-104. DOI: 10.3969/j.issn.1006-6187.2011.02.005.
- 71. Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians[J]. Hum Mol Genet, 2002, 11(21): 2607-2614. DOI: 10.1093/hmg/11.21.2607.
- 72. 王大鹏, 王长义, 赵晓雯, 等. 脂联素基因T45G多态性与2型糖尿病关系的Meta分析[J]. 中国糖尿病杂志, 2010, 18(5): 338-341. DOI: 10.3969/j.issn.1006-6187.2010.05.006.Wang DP, Wang CY, Zhao XW, et al. Meta analysis of the relationship between adiponectin gene T45G polymorphisms and type 2 diabetes[J]. Chin J Diabetes Mellitus, 2010, 18(5): 338-341. DOI: 10.3969/j.issn.1006-6187.2010.05.006.
- 73. 陶丽妃, 邱一果, 雷博. 脂联素与视网膜血管性疾病的相关性[J]. 中华眼底病杂志, 2015, 31(2): 202-205. DOI: 10.3760/cma.j.issn.1005-1015.2015.02.028.Tao LF, Qiu YG, Lei B. Association of adiponectin with retinal vascular diseases[J]. Chin J Ocul Fundus Dis, 2015, 31(2): 202-205. DOI: 10.3760/cma.j.issn.1005-1015.2015.02.028.
- 74. Li Y, Wu QH, Jiao ML, et al. Gene-environment interaction between adiponectin gene polymorphisms and environmental factors on the risk of diabetic retinopathy[J]. J Diabetes Investig, 2015, 6(1): 56-66. DOI: 10.1111/jdi.12249.
- 75. Zietz B, Buechler C, Kobuch K, et al. Serum levels of adiponectin are associated with diabetic retinopathy and with adiponectin gene mutations in Caucasian patients with diabetes mellitus type 2[J]. Exp Clin Endocrinol Diabetes, 2008, 116(9): 532-536. DOI: 10.1055/s-2008-1058086.
- 76. Choe EY, Wang HJ, Kwon O, et al. Variants of the adiponectin gene and diabetic microvascular complications in patients with type 2 diabetes[J]. Metabolism, 2013, 62(5): 677-685. DOI: 10.1016/j.metabol.2012.11.005.