• State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China;
Li Tao, Email: litao2@mail.sysu.edu.cn
Export PDF Favorites Scan Get Citation

Objective To observe the changes of macular morphology and blood flow after minimally invasive vitrectomy (PPV) in patients with severe non-proliferative diabetic retinopathy (sNPDR). Methods A prospective clinical study. From January 2020 to April 2021, 17 consecutive sNPDR patients with 17 eyes who were diagnosed and received PPV treatment at the Zhongshan Ophthalmic Center of Sun Yat-sen University were included in the study. There were 12 males with 12 eyes and 5 females with 5 eyes; the average age was 55 years old; the average duration of diabetes was 11 years; the average glycosylated hemoglobin was 7.9%. Before the operation and 1, 3, and 6 months after the operation, all the affected eyes underwent best corrected visual acuity (BCVA), standard 7-field fundus color photography, and optical coherence tomography angiography (OCTA). An OCTA instrument was used to scan the macular area of the affected eye with in the range of 3 mm×3 mm to measure the central subfoveal thickness (CST), the thickness of the ganglion cell complex (GCC) in the macular area, the thickness of the retinal nerve fiber layer (RNFL), and the superficial capillary plexus (SCP) vessel density and perfusion density in the macular area, macular avascular zone (FAZ) area, a-circularity index (AI). Before the operation and 6 months after the operation, the least significant difference test was used for the pairwise comparison. Results Before the operation, 1, 3, and 6 months after the operation, the FAZ area of the macular area were 0.34±0.14, 0.35±0.10, 0.37±0.10, 0.36±0.13 mm2, respectively; AI were 0.52±0.13, 0.54±0.11, 0.57±0.10, 0.60±0.11; CST was 282.6±66.7, 290.4±70.9, 287.2±67.5, 273.2±49.6 μm; GCC thickness were 77.1±15.5, 74.3±13.9, 72.6±16.2, 78.5±18.3 μm; the thickness of RNFL was 97.9±13.8, 101.3±14.6, 97.7±12.0, 96.1±11.4 μm, respectively. The overall blood flow density of SCP in the macula were (16.79±1.43)%, (16.71±1.82)%, (17.30±2.25)%, (17.35±1.22)%; the overall perfusion density were 0.32±0.02, 0.32±0.03, 0.33±0.03, 0.33±0.02, respectively. After the operation, the CST increased first and then decreased; the thickness of RNFL increased 1 month after the operation, and then gradually decreased. Comparison of the parameters before and 6 months after the operation showed that the AI improved, and the difference was statistically significant (P=0.049); the difference in FAZ area and the thickness of CST, GCC, and RNFL was not statistically significant (P=0.600, 0.694, 0.802, 0.712); There was no statistically significant difference in the retina SCP blood flow density and perfusion density in the macular area (P=0.347, 0.361). Conclusion Compared with before surgery, there is no significant change in macular structure and blood flow density in sNPDR patients within 6 months after minimally invasive PPV.

Citation: Zheng Wenbin, Lin Ying, Lai Kunbei, Chen Shida, Ding Xiaohu, Liu Bingqian, Xiao Sainan, Li Jizhu, Ma Yuan, Chen Ziye, Liang Xiaoling, Lyu Lin, Li Tao. Macular morphology and vascular parameters changes following micro-invasive vitrectomy in patients with severe non-proliferative diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases, 2022, 38(1): 34-39. doi: 10.3760/cma.j.cn511434-20211207-00686 Copy

  • Previous Article

    Study on retinal neurodegeneration and microvascular lesions in diabetic patients
  • Next Article

    Comparison of different loading doses followed by pro re nata regimens of intravitreal conbercept for diabetic macular edema