1. |
童妍, 卢苇, 邢怡桥, 等. 人工智能在眼科诊断中的应用研究现状[J]. 中华眼底病杂志, 2019, 35(5): 506-509. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.019.Tong Y, Lu W, Xing YQ, et al. Applications of artificial intelligence in the diagnosis of eye diseases[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 506-509. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.019.
|
2. |
Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J/OL]. Br J Ophthalmol, 2021, 30: bjophthalmol-2020-316290[2021-03-30]. https://pubmed.ncbi.nlm.nih.gov/33785508/. DOI: 10.1136/bjophthalmol-2020-316290.
|
3. |
Cen LP, Ji J, Lin JW, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks[J/OL]. Nat Commun, 2021, 12(1): 4828[2021-08-10]. https://pubmed.ncbi.nlm.nih.gov/34376678/. DOI: 10.1038/s41467-021-25138-w.
|
4. |
Lin D, Xiong J, Liu C, et al. Application of comprehensive artificial intelligence retinal expert (CARE) system: a national real-world evidence study[J/OL]. Lancet Digit Health, 2021, 3(8): e486-e495[2021-07-26]. https://pubmed.ncbi.nlm.nih.gov/34325853/. DOI: 10.1016/s2589-7500(21)00086-8.
|
5. |
李占峰, 李志清, 刘巨平, 等. 免散瞳超广角成像系统与免散瞳两个视野45°数码成像系统对糖尿病视网膜病变快速筛查结果的评估[J]. 中华眼底病杂志, 2016, 32(3): 243-247. DOI: 10.3760/cma.j.issn.1005-1015.2016.03.004.Li ZF, Li ZQ, Liu JP, et al. Nonmydriatic ultrawide field retinal imaging system and nonmydriatic two-field digital fundus photography system in a large-scale diabetic retinopathy screening[J]. Chin J Ocul Fundus Dis, 2016, 32(3): 243-247. DOI: 10.3760/cma.j.issn.1005-1015.2016.03.004.
|
6. |
陈珊, 周跃华, 郑燕, 等. 超广角激光扫描检眼镜与间接检眼镜对近视患者眼底病变筛查的比较[J]. 中华实验眼科杂志, 2020, 38(6): 504-509. DOI: 10.3760/cma.j.cn115989-20200512-00333.Chen S, Zhou YH, Zheng Y, et al. Comparison of ultra-wide field laser ophthalmoscopy and indirect ophthalmoscopy for fundus examination of myopia[J]. Chin J Exp Ophthalmol, 2020, 38(6): 504-509. DOI: 10.3760/cma.j.cn115989-20200512-00333.
|
7. |
Li Z, Guo C, Nie D, et al. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images[J/OL]. Ann Transl Med, 2019, 7(22): 618[2019-11-07]. https://pubmed.ncbi.nlm.nih.gov/31930019/. DOI: 10.21037/atm.2019.11.28.
|
8. |
Li Z, Guo C, Nie D, et al. Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images[J]. Commun Biol, 2020, 3(1): 15. DOI: 10.1038/s42003-019-0730-x.
|
9. |
Li Z, Guo C, Nie D, et al. Development and evaluation of a deep learning system for screening retinal hemorrhage based on ultra-widefield fundus images[J]. Transl Vis Sci Technol, 2020, 9(2): 3. DOI: 10.1167/tvst.9.2.3.
|
10. |
Tang F, Luenam P, Ran AR, et al. Detection of diabetic retinopathy from ultra-widefield scanning laser ophthalmoscope images: a multicenter deep learning analysis[J]. Ophthalmol Retina, 2021, 5(11): 1097-1106. DOI: 10.1016/j.oret.2021.01.013.
|
11. |
Li Z, Guo C, Lin D, et al. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images[J]. Br J Ophthalmol, 2020, 105(11): 1548-1554. DOI: 10.1136/bjophthalmol-2020-317327.
|
12. |
Ohno-Matsui K, Wu PC, Yamashiro K, et al. IMI pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 5. DOI: 10.1167/iovs.62.5.5.
|
13. |
Tan MX, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks[C/OL]//36th International Conference on Machine Learning (ICML), Long Beach, 2019[2019-06-09]. https://arxiv.org/abs/1905.11946.
|
14. |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023. DOI: 10.1109/tpami.2019.2913372.
|
15. |
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969. DOI: 10.1016/j.ophtha.2017.02.008.
|
16. |
Nagasawa T, Tabuchi H, Masumoto H, et al. Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy[J]. Int Ophthalmol, 2019, 39(10): 2153-2159. DOI: 10.1007/s10792-019-01074-z.
|
17. |
Matsuba S, Tabuchi H, Ohsugi H, et al. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration[J]. Int Ophthalmol, 2019, 39(6): 1269-1275. DOI: 10.1007/s10792-018-0940-0.
|
18. |
Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. Int J Ophthalmol, 2019, 12(1): 94-99. DOI: 10.18240/ijo.2019.01.15.
|
19. |
Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment[J/OL]. Sci Rep, 2017, 7(1): 9425[2017-08-25]. https://pubmed.ncbi.nlm.nih.gov/28842613/. DOI: 10.1038/s41598-017-09891-x.
|
20. |
Nagasawa T, Tabuchi H, Masurnoto H, et al. Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes[J/OL]. Peer J, 2018, 6: e5696[2018-10-22]. https://pubmed.ncbi.nlm.nih.gov/30370184/. DOI: 10.7717/peerj.5696.
|
21. |
Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy[J/OL]. J Ophthalmol, 2018, 2018: 1875431[2018-11-01]. https://pubmed.ncbi.nlm.nih.gov/30515316/. DOI: 10.1155/2018/1875431.
|
22. |
Zhang W, Zhao X, Chen Y, et al. DeepUWF: an automated ultra-wide-field fundus screening system via deep learning[J]. IEEE J Biomed Health Inform, 2021, 25(8): 2988-2996. DOI: 10.1109/jbhi.2020.3046771.
|