1. |
Sen M, Honavar SG, Sharma N, et al. COVID-19 and eye: a review of ophthalmic manifestations of COVID-19[J]. Indian J Ophthalmol, 2021, 69(3): 488-509. DOI: 10.4103/ijo.IJO_297_21.
|
2. |
尹胜杰, 张铭志. 暴发性流行性疾病病毒传播途径与眼病[J]. 中华实验眼科杂志, 2020, 38(2): 156-160. DOI: 10.3760/cma.j.issn.2095-0160.2020.02.014.Yin SJ, Zhang MZ. New coronavirus pneumonia and outbreak epidemic virus and eye disease[J]. Chin J Exp Ophthalmol, 2020, 38(2): 156-160. DOI: 10.3760/cma.j.issn.2095-0160.2020.02.014.
|
3. |
叶娅, 宋艳萍, 闫明, 等. 新型冠状病毒肺炎合并结膜炎三例[J]. 中华实验眼科杂志, 2020, 38(3): 242-244. DOI: 10.3760/cma.j.issn.2095-0160.2020.0004.Ye Y, Song YP, Yan M, et al. Novel coronavirus pneumonia combined with conjunctivitis: three cases report[J]. Chin J Exp Ophthalmol, 2020, 38(3): 242-244. DOI: 10.3760/cma.j.issn.2095-0160.2020.0004.
|
4. |
徐曼, 张宏达, 牛晓光. 以急性睑板腺炎和结膜下出血首诊于眼科的新型冠状病毒肺炎一例[J]. 中华实验眼科杂志, 2020, 38(4): 374-376. DOI: 10.3760/cma.j.cn115989-20200228-00121.Xu M, Zhang HD, Niu XG, et al. COVID-19 patient firstly visiting eye doctor due to tarsadenitis and subconjunctival hemorrhage: a case report[J]. Chin J Exp Ophthalmol, 2020, 38(4): 374-376. DOI: 10.3760/cma.j.cn115989-20200228-00121.
|
5. |
Tang SWK, Romano MR, Wong D, et al. The use of personal protective equipment in clinical ophthalmology during corona virus disease-2019: a review of international guidelines and literature[J]. Curr Opin Ophthalmol, 2020, 31(5): 435-446. DOI: 10.1097/ICU.0000000000000691.
|
6. |
Succar T, Beaver HA, Lee AG. Impact of COVID-19 pandemic on ophthalmology medical student teaching: educational innovations, challenges, and future directions[J]. Surv Ophthalmol, 2022, 67(1): 217-225. DOI: 10.1016/j.survophthal.2021.03.011.
|
7. |
Parke DW 2nd. COVID-19 era impacts on the American Academy of Ophthalmology[J]. Ophthalmology, 2020, 127(11): 1447-1450. DOI: 10.1016/j.ophtha.2020.07.056.
|
8. |
Pasricha ND, Haq Z, Ahmad TR, et al. Remote corneal suturing wet lab: microsurgical education during the COVID-19 pandemic[J]. J Cataract Refract Surg, 2020, 46(12): 1667-1673. DOI: 10.1097/j.jcrs.0000000000000374.
|
9. |
李志杰. 眼科医生和研究人员如何理解和应对新型冠状病毒肺炎的流行[J]. 中华实验眼科杂志, 2020, 38(3): 267-272. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.010.Li ZJ. How ophthalmologists should understand and respond to the current epidemic of novel coronavirus pneumonia[J]. Chin J Exp Ophthalmol, 2020, 38(3): 267-272. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.010.
|
10. |
黎晓新, 林宝娇, 陈燕芒, 等. 新型冠状病毒肺炎疫情期间眼科临床诊疗工作防控措施及岗位流程[J]. 中华实验眼科杂志, 2020, 38(3): 261-266. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.007.Li XX, Lin BJ, Chen YM, et al. Prevention and control measures and job procedures for ophthalmology clinical diagnosis and treatment during the novel coronavirus pneumonia epidemic[J]. Chin J Exp Ophthalmol, 2020, 38(3): 261-266. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.007.
|
11. |
王晓蕾, 王贞, 姚春莲, 等. 新型冠状病毒肺炎疫情下眼科患者围手术期管理实践[J]. 中华实验眼科杂志, 2020, 38(3): 200-203. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.016.Wang XL, Wang Z, Yao CL, et al. Management of ophthalmic perioperative period during 2019 novel coronavirus disease outbreak[J]. Chin J Exp Ophthalmol, 2020, 38(3): 200-203. DOI: 10.3760/cma.j.issn.2095-0160.2020.03.016.
|
12. |
高正, 王晓幸, 黄小明, 等. 新型冠状病毒肺炎疫情防控期间眼科远程专属医生平台的构建和应用价值[J]. 中华实验眼科杂志, 2020, 38(4): 305-310. DOI: 10.3760/cma.j.cn115989-20200306-00149.Gao Z, Wang XX, Huang XM, et al. Development of a remote dedicated doctor platform of ophthalmology and its application efficiency during epidemic of COVID-19[J]. Chin J Exp Ophthalmol, 2020, 38(4): 305-310. DOI: 10.3760/cma.j.cn115989-20200306-00149.
|
13. |
张璐佳, 靳秀秀, 雷博. 新型冠状病毒关键受体ACE2在眼部的分布及其临床意义[J]. 中华实验眼科杂志, 2020, 38(5): 463-467. DOI: 10.3760/cma.j.cn115989-20200316-00173.Zhang LJ, Jin XX, Lei B. Distribution and clinical significance of ACE2, a key receptor of 2019-nCoV, in ocular tissues[J]. Chin J Exp Ophthalmol, 2020, 38(5): 463-467. DOI: 10.3760/cma.j.cn115989-20200316-00173.
|
14. |
Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques[J/OL]. Nat Commun, 2020, 11(1): 4400[2022-03-08]. https://pubmed.ncbi.nlm.nih.gov/32879306/. DOI: 10.1038/s41467-020-18149-6.
|
15. |
Savastano MC, Gambini G, Savastano A, et al. Evidence-based of conjunctival COVID-19 positivity: an Italian experience: Gemelli Against COVID Group[J]. Eur J Ophthalmol, 2021, 31(6): 2886-2893. DOI: 10.1177/1120672120976548.
|
16. |
Arora R, Goel R, Kumar S, et al. Evaluation of SARS-CoV-2 in tears of patients with moderate to severe COVID-19[J]. Ophthalmology, 2021, 128(4): 494-503. DOI: 10.1016/j.ophtha.2020.08.029.
|
17. |
Sawant OB, Singh S, Wright RE, et al. Prevalence of SARS-CoV-2 in human post-mortem ocular tissues[J]. Ocul Surf, 2021, 19: 322-329. DOI: 10.1016/j.jtos.2020.11.002.
|
18. |
Bilgic A, Sudhalkar A, Gonzalez-Cortes JH, et al. Endogenous endophthalmitis in the setting of COVID-19 infection: a case series[J]. Retina, 2021, 41(8): 1709-1714. DOI: 10.1097/IAE.0000000000003168.
|
19. |
Araujo-Silva CA, Marcos A, Marinho PM, et al. Presumed SARS-CoV-2 viral particles in the human retina of patients with COVID-19[J]. JAMA Ophthalmol, 2021, 139(9): 1015-1021. DOI: 10.1001/jamaophthalmol.2021.2795.
|
20. |
Bernabei F, Versura P, Rossini G, et al. There is a role in detection of SARS-CoV-2 in conjunctiva and tears: a comprehensive review[J]. New Microbiol, 2020, 43(4): 149-155.
|
21. |
Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals[J]. Ocul Immunol Inflamm, 2020, 28(3): 391-395. DOI: 10.1080/09273948.2020.1738501.
|
22. |
Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19[J]. Lancet, 2020, 395(10237): 1610. DOI: 10.1016/S0140-6736(20)31014-X.
|
23. |
Sen S, Kannan NB, Kumar J, et al. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: a systematic review[J]. Int Ophthalmol, 2022, 42(1): 323-336. DOI: 10.1007/s10792-021-01996-7.
|
24. |
Künzel SE, Bürgel T, Künzel SH, et al. Low vulnerability of the posterior eye segment to SARS-COV-2 infection: chorioretinal SARS-CoV-2 vulnerability[J]. Retina, 2022, 42(2): 236-243. DOI: 10.1097/IAE.0000000000003320.
|
25. |
Cennamo G, Reibaldi M, Montorio D, et al. Optical coherence tomography angiography features in post-COVID-19 pneumonia patients: a pilot study[J]. Am J Ophthalmol, 2021, 227: 182-190. DOI: 10.1016/j.ajo.2021.03.015.
|
26. |
刘佩, 宋沉生, 吴松笛. 新型冠状病毒病神经眼科表现的研究现状[J]. 中华眼底病杂志, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252.Liu P, Song CS, Wu SD. Reserch progress of neuro-ophthalmic manifestations of coronavirus disease 2019[J]. Chin J Ocul Fundus Dis, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252.
|
27. |
Saldanha IJ, Petris R, Makara M, et al. Impact of the COVID-19 pandemic on eye strain and dry eye symptoms[J]. Ocul Surf, 2021, 22: 38-46. DOI: 10.1016/j.jtos.2021.06.004.
|
28. |
于薏, 周奕文, 万珊珊, 等. 新型冠状病毒肺炎疫情期间心理健康对干眼的影响及防控[J]. 中华实验眼科杂志, 2020, 38(5): 468-472. DOI: 10.3760/cma.j.cn115989-20200322-00192.Yu Y, Zhou YW, Wan SS, et al. Impact of psychological health on dry eye and management during the coronavirus disease-19 epidemic[J]. Chin J Exp Ophthalmol, 2020, 38(5): 468-472. DOI: 10.3760/cma.j.cn115989-20200322-00192.
|
29. |
张海, 刘钢, 杭伟, 等. 鼻眶脑型毛霉菌病九例[J]. 中华耳鼻咽喉头颈外科杂志, 2014, 49(6): 446-451. DOI: 10.3760/cma.j.issn.1673-0860.2014.06.002.Zhang H, Liu G, Hang W, et al. Rhino-orbito-cerebral mucormycosis: report of 9 cases[J]. Chin J Otorhinolaryngol Head Neck Surg, 2014, 49(6): 446-451. DOI: 10.3760/cma.j.issn.1673-0860.2014.06.002.
|
30. |
Thakar A, Lal D. "Black fungus": a perspective on the coronavirus disease 2019 (COVID-19)-associated rhino-orbital mucormycosis epidemic in India[J]. Int Forum Allergy Rhinol, 2021, 11(8): 1278-1279. DOI: 10.1002/alr.22855.
|
31. |
Ravani SA, Agrawal GA, Leuva PA, et al. Rise of the phoenix: mucormycosis in COVID-19 times[J]. Indian J Ophthalmol, 2021, 69(6): 1563-1568. DOI: 10.4103/ijo.IJO_310_21.
|
32. |
Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370(6518): 856-860. DOI: 10.1126/science.abd2985.
|
33. |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280. DOI: 10.1016/j.cell.2020.02.052.
|
34. |
Yao Y, Ma D, Xu Y, et al. Hydroxychloroquine treatment on SARS-CoV-2 receptor ACE2, TMPRSS2 and NRP1 expression in human primary pterygium and conjunctival cells[J/OL]. Exp Eye Res, 2022, 214: 108864[2021-11-24]. https://pubmed.ncbi.nlm.nih.gov/34826419/. DOI: 10.1016/j.exer.2021.108864.
|
35. |
Nicolò M, Ferro Desideri L, Bassetti M, et al. Hydroxychloroquine and chloroquine retinal safety concerns during COVID-19 outbreak[J]. Int Ophthalmol, 2021, 41(2): 719-725. DOI: 10.1007/s10792-020-01593-0.
|
36. |
Karagöz IK, Munk MR, Kaya M, et al. Using bioinformatic protein sequence similarity to investigate if SARS CoV-2 infection could cause an ocular autoimmune inflammatory reactions?[J/OL]. Exp Eye Res, 2021, 203: 108433[2021-01-02]. https://pubmed.ncbi.nlm.nih.gov/33400927/. DOI: 10.1016/j.exer.2020.108433.
|
37. |
Eleiwa TK, Gaier ED, Haseeb A, et al. Adverse ocular events following COVID-19 vaccination[J]. Inflamm Res, 2021, 70(10-12): 1005-1009. DOI: 10.1007/s00011-021-01506-6.
|
38. |
Jampol LM, Tauscher R, Schwarz HP. COVID-19, COVID-19 vaccinations, and subsequent abnormalities in the retina: causation or coincidence?[J]. JAMA Ophthalmol, 2021, 139(10): 1135-1136. DOI: 10.1001/jamaophthalmol.2021.3483.
|