1. |
Zhang J, Li Z, Ren J, et al. Prevalence of myopia: a large-scale population-based study among children and adolescents in Weifang, China[J/OL]. Front Public Health, 2022, 10: 924566[2022-07-25]. https://pubmed.ncbi.nlm.nih.gov/35958863/. DOI: 10.3389/fpubh.2022.924566.
|
2. |
Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children[J/OL]. Cochrane Database Syst Rev, 2020, 1(1): CD004916[2022-01-13]. https://pubmed.ncbi.nlm.nih.gov/31930781/. DOI: 10.1002/14651858.CD004916.pub4.
|
3. |
VanderVeen DK, Kraker RT, Pineles SL, et al. Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2019, 126(4): 623-636. DOI: 10.1016/j.ophtha.2018.11.026.
|
4. |
Ha A, Kim SJ, Shim SR, et al. Efficacy and safety of 8 atropine concentrations for myopia control in children: a network meta-analysis[J]. Ophthalmology, 2022, 129(3): 322-333. DOI: 10.1016/j.ophtha.2021.10.016.
|
5. |
Sankaridurg P, Tahhan N, Kandel H, et al. IMI impact of myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 2. DOI: 10.1167/iovs.62.5.2.
|
6. |
Denman DJ, Siegle JH, Koch C, et al. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus[J]. J Neurosci, 2017, 37(5): 1102-1116. DOI: 10.1523/JNEUROSCI.1742-16.2016.
|
7. |
Conway BR. Color signals through dorsal and ventral visual pathways[J]. Vis Neurosci, 2014, 31(2): 197-209. DOI: 10.1017/S0952523813000382.
|
8. |
Miller NP, Aldred B, Schmitt MA, et al. Impact of amblyopia on the central nervous system[J]. J Binocul Vis Ocul Motil, 2020, 70(4): 182-192. DOI: 10.1080/2576117X.2020.1841710.
|
9. |
Ye J, Sinha P, Hou F, et al. Impact of temporal visual flicker on spatial contrast sensitivity in myopia[J/OL]. Front Neurosci, 2021, 15: 710344[2021-08-05]. https://pubmed.ncbi.nlm.nih.gov/34421527/. DOI: 10.3389/fnins.2021.710344.
|
10. |
Megreli J, Barak A, Bez M, et al. Association of myopia with cognitive function among one million adolescents[J/OL]. BMC Public Health, 2020, 20(1): 647[2020-05-08]. https://pubmed.ncbi.nlm.nih.gov/32384882/. DOI: 10.1186/s12889-020-08765-8.
|
11. |
Wu YJ, Wu N, Huang X, et al. Evidence of cortical thickness reduction and disconnection in high myopia[J/OL]. Sci Rep, 2020, 10(1): 16239[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/33004887/. DOI: 10.1038/s41598-020-73415-3.
|
12. |
Huang X, Hu Y, Zhou F, et al. Altered whole-brain gray matter volume in high myopia patients: a voxel-based morphometry study[J]. Neuroreport, 2018, 29(9): 760-767. DOI: 10.1097/WNR.0000000000001028.
|
13. |
Zhang Y, Lin X, Bi A, et al. Changes in visual cortical function in moderately myopic patients: a functional near-infrared spectroscopy study[J]. Ophthalmic Physiol Opt, 2022, 42(1): 36-47. DOI: 10.1111/opo.12921.
|
14. |
Suo S, Tang H, Lu Q, et al. Blood oxygenation level-dependent cardiovascular magnetic resonance of the skeletal muscle in healthy adults: different paradigms for provoking signal alterations[J]. Magn Reson Med, 2021, 85(3): 1590-1601. DOI: 10.1002/mrm.28495.
|
15. |
Li Q, Guo M, Dong H, et al. Voxel-based analysis of regional gray and white matter concentration in high myopia[J]. Vision Res, 2012, 58: 45-50. DOI: 10.1016/j.visres.2012.02.005.
|
16. |
Zhai L, Li Q, Wang T, et al. Altered functional connectivity density in high myopia[J]. Behav Brain Res, 2016, 303: 85-92. DOI: 10.1016/j.bbr.2016.01.046.
|
17. |
Wu YY, Yuan Q, Li B, et al. Altered spontaneous brain activity patterns in patients with retinal vein occlusion indicated by the amplitude of low-frequency fluctuation: a functional magnetic resonance imaging study[J]. Exp Ther Med, 2019, 18(3): 2063-2071. DOI: 10.3892/etm.2019.7770.
|
18. |
Cheng Y, Huang X, Hu YX, et al. Comparison of intrinsic brain activity in individuals with low/moderate myopia versus high myopia revealed by the amplitude of low-frequency fluctuations[J]. Acta Radiol, 2020, 61(4): 496-507. DOI: 10.1177/0284185119867633.
|
19. |
Yu YJ, Liang RB, Yang QC, et al. Altered spontaneous brain activity patterns in patients after lasik surgery using amplitude of low-frequency fluctuation: a resting-state functional MRI study[J]. Neuropsychiatr Dis Treat, 2020, 16: 1907-1917. DOI: 10.2147/NDT.S252850.
|
20. |
Durrie D, McMinn PS. Computer-based primary visual cortex training for treatment of low myopia and early presbyopia[J]. Trans Am Ophthalmol Soc, 2007, 105: 132-138.
|
21. |
Nickla DL, Thai P, Zanzerkia Trahan R, et al. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: effects on rhythms in axial length and choroid thickness in chicks[J]. Exp Eye Res, 2017, 154: 104-115. DOI: 10.1016/j.exer.2016.11.012.
|
22. |
Kang MT, Wang B, Ran AR, et al. Brain activation induced by myopic and hyperopic defocus from spectacles[J/OL]. Front Hum Neurosci, 2021, 15: 711713[2021-09-14]. https://pubmed.ncbi.nlm.nih.gov/34594194/. DOI: 10.3389/fnhum.2021.711713.
|
23. |
Beaupere C, Liboz A, Feve B, et al. Molecular mechanisms of glucocorticoid-induced insulin resistance[J]. Int J Mol Sci, 2021, 22(2): 623. DOI: 10.3390/ijms22020623.
|
24. |
Ding M, Guo D, Wu J, et al. Effects of glucocorticoid on the eye development in guinea pigs[J]. Steroids, 2018, 139: 1-9. DOI: 10.1016/j.steroids.2018.09.008.
|
25. |
Zhang T, Jiang Q, Xu F, et al. Alternation of resting-state functional connectivity between visual cortex and hypothalamus in guinea pigs with experimental glucocorticoid enhanced myopia after the treatment of electroacupuncture[J/OL]. Front Neuroinform, 2020, 14: 579769[2021-01-13]. https://pubmed.ncbi.nlm.nih.gov/33519409/. DOI: 10.3389/fninf.2020.579769.
|
26. |
Sha F, Ye X, Zhao W, et al. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia[J]. Neuroscience, 2015, 287: 164-174. DOI: 10.1016/j.neuroscience.2014.12.022.
|
27. |
Kurcyus K, Annac E, Hanning NM, et al. Opposite dynamics of GABA and glutamate levels in the occipital cortex during visual processing[J]. J Neurosci, 2018, 38(46): 9967-9976. DOI: 10.1523/JNEUROSCI.1214-18.2018.
|
28. |
Chamberlain JD, Gagnon H, Lalwani P, et al. GABA levels in ventral visual cortex decline with age and are associated with neural distinctiveness[J]. Neurobiol Aging, 2021, 102: 170-177. DOI: 10.1016/j.neurobiolaging.2021.02.013.
|
29. |
Zhao W, Bi AL, Xu CL, et al. GABA and GABA receptors alterations in the primary visual cortex of concave lens-induced myopic model[J]. Brain Res Bull, 2017, 130: 173-179. DOI: 10.1016/j.brainresbull.2017.01.017.
|
30. |
Zhou X, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: what are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI: 10.1016/j.preteyeres.2017.06.003.
|
31. |
Landis EG, Park HN, Chrenek M, et al. Ambient light regulates retinal dopamine signaling and myopia susceptibility[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 28. DOI: 10.1167/iovs.62.1.28.
|
32. |
Yang J, Ouyang X, Fu H, et al. Advances in biomedical study of the myopia-related signaling pathways and mechanisms[J/OL]. Biomed Pharmacother, 2022, 145: 112472[2022-01-15]. https://pubmed.ncbi.nlm.nih.gov/34861634/. DOI: 10.1016/j.biopha.2021.112472.
|
33. |
Huang F, Wang Q, Yan T, et al. The Role of the dopamine D2 receptor in form-deprivation myopia in mice: studies with full and partial D2 receptor agonists and knockouts[J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 47. DOI: 10.1167/iovs.61.6.47.
|
34. |
Guoping L, Xiang Y, Jianfeng W, et al. Alterations of glutamate and gamma-aminobutyric acid expressions in normal and myopic eye development in guinea pigs[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1256-1265. DOI: 10.1167/iovs.16-21130.
|