1. |
Gordon LK. Optic nerve[J]. Handb Exp Pharmacol, 2017, 242: 369-386. DOI: 10.1007/164_2016_19.
|
2. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216.
|
3. |
Burlina PM, Joshi N, Pacheco KD, et al. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration[J]. JAMA Ophthalmol, 2018, 136(12): 1359-1366. DOI: 10.1001/jamaophthalmol.2018.4118.
|
4. |
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI: 10.1001/jamaophthalmol.2018.1934.
|
5. |
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206. DOI: 10.1016/j.ophtha.2018.01.023.
|
6. |
Toosy AT, Mason DF, Miller DH. Optic neuritis[J]. Lancet Neurol, 2014, 13(1): 83-99. DOI: 10.1016/S1474-4422(13)70259-X.
|
7. |
Abel A, McClelland C, Lee MS. Critical review: typical and atypical optic neuritis[J]. Surv Ophthalmol, 2019, 64(6): 770-779. DOI: 10.1016/j.survophthal.2019.06.001.
|
8. |
Miller NR, Arnold AC. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy[J]. Eye (Lond), 2015, 29(1): 65-79. DOI: 10.1038/eye.2014.144.
|
9. |
Biousse V, Newman NJ. Ischemic optic neuropathies[J]. N Engl J Med, 2015, 372(25): 2428-2436. DOI: 10.1056/NEJMra1413352.
|
10. |
魏世辉, 张晓君, 钟勇, 等. 视神经炎诊断和治疗专家共识(2014年)[J]. 中华眼科杂志, 2014, 50(6): 459-463. DOI: 10.3760/cma.j.issn.0412-4081.2014.06.013.Wei SH, Zhang XJ, Zhong Y, et al. Expert consensus on the diagnosis and treatment of optic neuritis (2014)[J]. Chin J Ophthalmol, 2014, 50(6): 459-463. DOI: 10.3760/cma.j.issn.0412-4081.2014.06.013.
|
11. |
中华医学会眼科学分会神经眼科学组. 我国非动脉炎性前部缺血性视神经病变诊断和治疗专家共识(2015年)[J]. 中华眼科杂志, 2015, 51(5): 323-326. DOI: 10.3760/cma.j.issn.0412-4081.2015.05.002.Neuro-Ophthalmology Group of Chinese Medical Association Ophthalmology Branch. Expert consensus on the diagnosis and treatment of non-arteritic anterior ischemic optic neuropathy in China (2015)[J]. Chin J Ophthalmol, 2015, 51(5): 323-326. DOI: 10.3760/cma.j.issn.0412-4081.2015.05.002.
|
12. |
Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2020-09-11]. https://arxiv.org/abs/1905.11946.
|
13. |
Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[EB/OL]. [2016-12-12]. https://ieeexplore.ieee.org/document/7780688.
|
14. |
Milea D, Najjar RP, Zhubo J, et al. Artificial intelligence to detect papilledema from ocular fundus photographs[J]. N Engl J Med, 2020, 382(18): 1687-1695. DOI: 10.1056/NEJMoa1917130.
|
15. |
Akbar S, Akram MU, Sharif M, et al. Decision support system for detection of papilledema through fundus retinal images[J]. J Med Syst, 2017, 41(4): 66. DOI: 10.1007/s10916-017-0712-9.
|
16. |
Fatima KN, Hassan T, Akram MU, et al. Fully automated diagnosis of papilledema through robust extraction of vascular patterns and ocular pathology from fundus photographs[J]. Biomed Opt Express, 2017, 8(2): 1005-1024. DOI: 10.1364/BOE.8.001005.
|
17. |
Ahn JM, Kim S, Ahn KS, et al. Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema[J/OL]. BMC Ophthalmol, 2019, 19(1): 178[2019-08-09]. https://pubmed.ncbi.nlm.nih.gov/31399077/. DOI: 10.1186/s12886-019-1184-0.
|
18. |
Liu TYA, Wei J, Zhu H, et al. Detection of optic disc abnormalities in color fundus photographs using deep learning[J]. J Neuroophthalmol, 2021, 41(3): 368-374. DOI: 10.1097/WNO.0000000000001358.
|